|
1. Herminghaus, S., Roughness-induced non-wetting. EPL (Europhysics Letters), 2000. 52(2): p. 165. 2. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994. 3. Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40: p. 546-551. 4. Sun, T., et al., Bioinspired Surfaces with Special Wettability. Accounts of Chemical Research, 2005. 38(8): p. 644-652. 5. Feng, L., et al., Super‐hydrophobic surfaces: from natural to artificial. Advanced materials, 2002. 14(24): p. 1857-1860. 6. Guo, Z., W. Liu, and B.L. Su, Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interface Sci, 2011. 353(2): p. 335-55. 7. Yan, Y.Y., N. Gao, and W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Advances in Colloid and Interface Science, 2011. 169(2): p. 80-105. 8. Liu, K., Y. Tian, and L. Jiang, Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Progress in Materials Science, 2013. 58(4): p. 503-564. 9. Yang, S., et al., Nanoparticles assembly-induced special wettability for bio-inspired materials. Particuology, 2013. 11(4): p. 361-370. 10. Wong, T.S., et al., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011. 477(7365): p. 443-7. 11. Kim, P., et al., Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates. Nano Letters, 2013. 13(4): p. 1793-1799. 12. Young, T., An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 1805. 95: p. 65-87. 13. Cottin-Bizonne, C., et al., Low-friction flows of liquid at nanopatterned interfaces. Nature materials, 2003. 2(4): p. 237-240. 14. Lafuma, A. and D. Quere, Superhydrophobic states. Nat Mater, 2003. 2(7): p. 457-60. 15. Zhang, D., et al., Wetting characteristics on hierarchical structures patterned by a femtosecond laser. Journal of Micromechanics and Microengineering, 2010. 20(7): p. 075029. 16. Shastry, A., M.J. Case, and K.F. Böhringer, Directing droplets using microstructured surfaces. Langmuir, 2006. 22(14): p. 6161-6167. 17. Sommers, A.D. and A.M. Jacobi, Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface. Journal of Micromechanics and Microengineering, 2006. 16(8): p. 1571-1578. 18. Bliznyuk, O., et al., Metastable droplets on shallow-grooved hydrophobic surfaces. Physical Review E, 2011. 83(4). 19. Chung, J.Y., J.P. Youngblood, and C.M. Stafford, Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter, 2007. 3(9): p. 1163. 20. Bliznyuk, O., et al., Initial spreading kinetics of high-viscosity droplets on anisotropic surfaces. Langmuir, 2010. 26(9): p. 6328-34. 21. Jansen, H.P., et al., Tuning kinetics to control droplet shapes on chemically striped patterned surfaces. Langmuir, 2012. 28(37): p. 13137-42. 22. Chen, Y., et al., Anisotropy in the wetting of rough surfaces. J Colloid Interface Sci, 2005. 281(2): p. 458-64. 23. Yoshimitsu, Z., et al., Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir, 2002. 18(15): p. 5818-5822. 24. Hyvaluoma, J., et al., Droplets on inclined rough surfaces. Eur Phys J E Soft Matter, 2007. 23(3): p. 289-93. 25. Cui, X.S. and W. Li, On the possibility of superhydrophobic behavior for hydrophilic materials. J Colloid Interface Sci, 2010. 347(1): p. 156-62. 26. Liu, J.-L., et al., Mechanisms of superhydrophobicity on hydrophilic substrates. Journal of Physics: Condensed Matter, 2007. 19(35): p. 356002. 27. Cao, L., H.-H. Hu, and D. Gao, Design and Fabrication of Micro-textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials. Langmuir, 2007. 23(8): p. 4310-4314. 28. Wang, J., et al., Superhydrophobic behavior achieved from hydrophilic surfaces. Applied Physics Letters, 2009. 95(8): p. 084104. 29. Feng, L., et al., Creation of a superhydrophobic surface from an amphiphilic polymer. Angewandte Chemie, 2003. 115(7): p. 824-826. 30. Hosono, E., et al., Superhydrophobic perpendicular nanopin film by the bottom-up process. Journal of the American Chemical Society, 2005. 127(39): p. 13458-13459. 31. Park, C.I., et al., Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials. J Colloid Interface Sci, 2009. 336(1): p. 298-303. 32. Barthlott, W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202(1): p. 1-8. 33. Guo, Z. and W. Liu, Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Science, 2007. 172(6): p. 1103-1112. 34. Neinhuis, C. and W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 1997. 79(6): p. 667-677. 35. Riedel, M., A. Eichner, and R. Jetter, Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta, 2003. 218(1): p. 87-97. 36. Gaume, L., et al., How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthropod Struct Dev, 2004. 33(1): p. 103-11. 37. Scholz, I., et al., Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. J Exp Biol, 2010. 213(Pt 7): p. 1115-25. 38. Bauer, U. and W. Federle, The insect-trapping rim of Nepenthes pitchers: surface structure and function. Plant signaling & behavior, 2009. 4(11): p. 1019-1023. 39. Bauer, U., et al., How to catch more prey with less effective traps: explaining the evolution of temporarily inactive traps in carnivorous pitcher plants. Proc Biol Sci, 2015. 282(1801): p. 20142675. 40. Gorb, E., et al., Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. J Exp Biol, 2005. 208(Pt 24): p. 4651-62. 41. Gaume, L., S. Gorb, and N. Rowe, Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. New Phytologist, 2002. 156(3): p. 479-489. 42. Merbach, M.A., et al., Patterns of nectar secretion in five Nepenthes species from Brunei Darussalam, Northwest Borneo, and implications for ant-plant relationships. 2001. 43. Bauer, U., H.F. Bohn, and W. Federle, Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar. Proc Biol Sci, 2008. 275(1632): p. 259-65. 44. Bohn, H.F. and W. Federle, Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci U S A, 2004. 101(39): p. 14138-43. 45. Kim, M., et al., A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold. Chem Commun (Camb), 2007(22): p. 2237-9. 46. Zhao, X.-M., Y. Xia, and G.M. Whitesides, Soft lithographic methods for nano-fabrication. Journal of Materials Chemistry, 1997. 7(7): p. 1069-1074. 47. Sun, M., et al., Artificial Lotus Leaf by Nanocasting. Langmuir, 2005. 21(19): p. 8978-8981. 48. Singh, R.A., et al., Replication of surfaces of natural leaves for enhanced micro-scale tribological property. Materials Science and Engineering: C, 2007. 27(4): p. 875-879. 49. Liu, Y. and G. Li, A new method for producing “Lotus Effect” on a biomimetic shark skin. Journal of Colloid and Interface Science, 2012. 388(1): p. 235-242. 50. Ghosh, N., A. Bajoria, and A.A. Vaidya, Surface Chemical Modification of Poly(dimethylsiloxane)-Based Biomimetic Materials: Oil-Repellent Surfaces. ACS Applied Materials & Interfaces, 2009. 1(11): p. 2636-2644. 51. Lee, T.W., O. Mitrofanov, and J.W. Hsu, Pattern‐Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio. Advanced Functional Materials, 2005. 15(10): p. 1683-1688. 52. Choi, H.K., et al., Fabrication of Ordered Nanostructured Arrays Using Poly(dimethylsiloxane) Replica Molds Based on Three-Dimensional Colloidal Crystals. Advanced Functional Materials, 2009. 19(10): p. 1594-1600. 53. Choi, H.K., et al., Fabrication of Ordered Nanostructured Arrays Using Poly (dimethylsiloxane) Replica Molds Based on Three‐Dimensional Colloidal Crystals. Advanced Functional Materials, 2009. 19(10): p. 1594-1600. 54. Kim, D.S., et al., Fabrication of PDMS micro/nano hybrid surface for increasing hydrophobicity. Microelectronic Engineering, 2009. 86(4-6): p. 1375-1378. 55. Cortese, B., et al., Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir, 2008. 24(6): p. 2712-2718. 56. Steele, A., I. Bayer, and E. Loth, Inherently Superoleophobic Nanocomposite Coatings by Spray Atomization. Nano Letters, 2009. 9(1): p. 501-505. 57. Jung, Y.C. and B. Bhushan, Mechanically Durable Carbon Nanotube−Composite Hierarchical Structures with Superhydrophobicity, Self-Cleaning, and Low-Drag. ACS Nano, 2009. 3(12): p. 4155-4163. 58. Wang, H., et al., One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chem Commun (Camb), 2008(7): p. 877-9. 59. He, Z., et al., Fabrication of superhydrophobic coating via a facile and versatile method based on nanoparticle aggregates. Applied Surface Science, 2012. 258(7): p. 2544-2550. 60. Basu, B.J., V. Dinesh Kumar, and C. Anandan, Surface studies on superhydrophobic and oleophobic polydimethylsiloxane–silica nanocomposite coating system. Applied Surface Science, 2012. 261: p. 807-814. 61. Zhou, H., et al., Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater, 2012. 24(18): p. 2409-12. 62. Li, K., et al., Study on the wetting behavior and theoretical models of polydimethylsiloxane/silica coating. Applied Surface Science, 2013. 279: p. 458-463. 63. Ghosh, N., A. Bajoria, and A.A. Vaidya, Surface chemical modification of poly(dimethylsiloxane)-based biomimetic materials: oil-repellent surfaces. ACS Appl Mater Interfaces, 2009. 1(11): p. 2636-44. 64. Nussbaum, P., et al., Simple technique for replication of micro-optical elements. Optical Engineering, 1998. 37(6): p. 1804-1808. 65. Kim, S.H., et al., Simple Route to Hydrophilic Microfluidic Chip Fabrication Using an Ultraviolet (UV)-Cured Polymer. Advanced Functional Materials, 2007. 17(17): p. 3493-3498. 66. Bhattacharya, S., et al., Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Microelectromechanical Systems, Journal of, 2005. 14(3): p. 590-597. 67. Kim, H.T. and O.C. Jeong, PDMS surface modification using atmospheric pressure plasma. Microelectronic Engineering, 2011. 88(8): p. 2281-2285. 68. Anderson, T.F., TECHNIQUES FOR THE PRESERVAATION OF THREE-DIMENSIONAL STRUCTURE IN PREPARING SPECIMENS FOR THE ELECTRON MICROSCOPE*. Transactions of the New York Academy of Sciences, 1951. 13(4 Series II): p. 130-134. 69. Hayat, M.A., Principles and techniques of scanning electron microscopy. Biological applications. Volume 1. 1974: Van Nostrand Reinhold Company. 70. Morris, J.K., A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. J. cell. Biol, 1965. 27: p. 137-139. 71. Kim, G.-D., et al., Synthesis and applications of TEOS/PDMS hybrid material by the sol–gel process. Applied Organometallic Chemistry, 1999. 13(5): p. 361-372. 72. Hsu, C.-P., Y.-M. Lin, and P.-Y. Chen, Hierarchical Structure and Multifunctional Surface Properties of Carnivorous Pitcher Plants Nepenthes. JOM, 2015. 67(4): p. 744-753. 73. Jeffree, C., E. Baker, and P. Holloway, Ultrastructure and recrystallization of plant epicuticular waxes. New Phytologist, 1975. 75(3): p. 539-549. 74. Wang, L., et al., Composite structure and properties of the pitcher surface of the carnivorous plant Nepenthes and its influence on the insect attachment system. Progress in Natural Science, 2009. 19(12): p. 1657-1664. 75. Chuang, S.-I. and J.-G. Duh, Exploration of surface hydrophilic properties on AISI 304 stainless steel and silicon wafer against aging after atmospheric pressure plasma treatment. Japanese Journal of Applied Physics, 2014. 53(11S): p. 11RA01.
|