帳號:guest(3.141.30.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林玉敏
作者(外文):Lin, Yu Min
論文名稱(中文):Inspirations from the Peristome of Nepenthes: Microstructural Characterization and Wettability Measurement of Multifunctional Surfaces Synthesized by Bio-replication and Surface Modification Techniques
論文名稱(外文):豬籠草唇之啟發: 以生物翻模與表面處理技術合成多功能表面之微結構分析與濕潤性質量測
指導教授(中文):陳柏宇
指導教授(外文):Chen, Po Yu
口試委員(中文):衛榮漢
王潔
口試委員(外文):Wei, Zung Hang
Wang, Jane
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031554
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:93
中文關鍵詞:食蟲植物豬籠草多階層結構潤濕性疏水親水異向性潤濕表面改質
外文關鍵詞:Nepenthescarnivorous plantshierarchical structurewettabilityhydrophobicityhydrophilicityanisotropic wettingsurface modification
相關次數:
  • 推薦推薦:0
  • 點閱點閱:490
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了適應營養貧瘠的環境,食蟲植物演化出具特殊功能的葉子來獲取養分,豬籠草的捕蟲籠同時扮演了吸引、捕捉以及儲存獵物的功能,位於捕蟲籠上方的唇可在潮濕的環境下啟動捕食機制,山脊般的多階層結構提升其超親水性並產生異向性的表面潤濕性。本研究著重於探討豬籠草的捕蟲籠唇表面結構以及濕潤性質,在固定的溫度與濕度範圍內,比較以三種方式處理 (新鮮、臨界點乾燥處理及鍍覆糖漿)的豬籠草唇潤濕效果。此外,為瞭解微結構的影響,我們以簡單的翻模方法得到仿豬籠草唇表面的兩種高分子材料(PDMS和 NOA 63),可以保存表面多階層結構並呈現接近超疏水性質(接觸角約140),相互平行的溝脊結構也使其具有異向性潤濕的特性。以此具有相同結構的高分子材料為基板,進而利用表面改質以及修飾的方式改變其表面性質。首先,結合溶膠凝膠及噴霧塗佈法使小尺寸的粒子附著在高分子基板上,產生多階層結構,獲得兼具高疏水性以及抗沾水性質的表面。另一方面,大氣電漿則用來在基板表面產生氫氧基,得到暫時性的親水性表面,結果顯示NOA 63的親水時效性較PDMS久。未來可將此特殊結構應用在不同的製程及材料上,製作出具多功能表面特性的新穎仿生材料。
Carnivorous plants have evolved leaves into unique functions to adapt infertile environments. Genus Nepenthes has pitcher for attracting and retaining the prey. Peristome, a rim that surrounded on the top of pitcher, is a trap activated in wet and moist conditions. Ridge-like hierarchical structure of peristome surface enhances the superhydrophilicity and results in anisotropic wetting. This research focused on the microstructure and wettability of peristome. Wetting efficiency of peristome was measured under 3 conditions (fresh, critical point dryer-treated and sucrose-coated) under controlled temperature and relative humidity to elucidate the wetting mechanism. In order to understand the effect of microstructure of peristome on the wetting properties, two kinds of polymer, PDMS and NOA 63, were used to mimic the surface of peristome via replication method. The replicas not only well preserve the original structure but exhibit nearly superhydrophobicity (contact angle ~140) and anisotropic wettability due to the parallel ridges on the surface. Surface modifications were further employed on the surface to adjust the surface properties. Spray coating and sol-gel methods were utilized to deposit smaller PDMS-TEOS cross-linked particles on replica and form hierarchical structures, exhibiting both superhydrophobicity and water-repellency. On the other hand, atmospheric pressure plasma was applied to generate hydroxyl groups on the surface, leading to temporarily hydrophilic surface. The hydrophobic recovery time of NOA 63 was longer than that of PDMS. Results indicate that the unique microstructure of peristome can be utilized in various processes and materials to synthesize novel bio-inspired materials with multifunctional surface properties.
List of Tables V
Figure Caption VI
1 Introduction 1
2 Literature Review 4
2.1 Wetting 4
2.1.1 Theory of Superhydrophobicity 4
2.1.2 Anisotropic Wetting 5
2.1.3 Wetting Transition for Hydrophilic Materials 7
2.1.4 Superhydrophobic Plant Surfaces 8
2.2 Surface Properties and Capture Mechanisms of Nepenthes 19
2.3 Synthesis of Superhydrophobic Surfaces 23
2.3.1 Replication Method 23
2.3.2 Spray Coating Method 24
2.4 Surface Modifications 31
3 Experimental Methods 34
3.1 Sample Preparation of Waxy Zone and Digestive Zone 34
3.2 Wetting Efficiency Measurement of Peristome 34
3.2.1 Sample Preparation 34
3.2.2 Wetting Efficiency Measurement 36
3.3 Replication Process 41
3.3.1 Synthesis of Negative Mold 41
3.3.2 Synthesis of Positive Mold 41
3.4 Spray Coating Process 44
3.5 Atmospheric Pressure Plasma Treatment 44
3.6 Structural Characterization 45
3.6.1 Optical Microscopy 45
3.6.2 Scanning Electron Microscopy 45
3.6.3 Contact Angle Measurement 46
4 Results and Discussions 48
4.1 Waxy Zone and Digestive Zone 48
4.1.1 Surface Morphology and Microstructure 48
4.1.2 Wetting Property 49
4.2 Surface Properties of Peristome 52
4.2.1 Surface Morphology and Microstructure 52
4.2.2 Wetting Efficiency Measurement 53
4.2.3 The Importance of Microstructure 54
4.2.4 The Importance of Hydroxyl Group 55
4.3 Replication 61
4.3.1 Microstructure Characterization 61
4.3.2 Contact Angle Measurement 61
4.3.3 Wetting Transition 63
4.4 Spray Coating 68
4.4.1 Microstructure Characterization 68
4.4.2 Wettability 69
4.4.3 Water-repellency 70
4.5 Surface Modification by Atmospheric Plasma Treatment 76
4.5.1 Wettability and Hydrophobicity Recovery 76
4.5.2 The Effect of Injected Gases 77
4.5.3 The Role of Hierarchical Structure 77
5 Conclusions 81
6 Future work 84
6.1 Calculation of Theoretical Contact Angle 84
6.2 Selection of hydrophilic materials 85
6.3 Lithographic Fabrication 85
6.4 Modification of Spray Coating Procedure 86
6.5 Synthesis of Hydrophobic/Hydrophilic Hybrid Surfaces 86
References 88
1. Herminghaus, S., Roughness-induced non-wetting. EPL (Europhysics Letters), 2000. 52(2): p. 165.
2. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994.
3. Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40: p. 546-551.
4. Sun, T., et al., Bioinspired Surfaces with Special Wettability. Accounts of Chemical Research, 2005. 38(8): p. 644-652.
5. Feng, L., et al., Super‐hydrophobic surfaces: from natural to artificial. Advanced materials, 2002. 14(24): p. 1857-1860.
6. Guo, Z., W. Liu, and B.L. Su, Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interface Sci, 2011. 353(2): p. 335-55.
7. Yan, Y.Y., N. Gao, and W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Advances in Colloid and Interface Science, 2011. 169(2): p. 80-105.
8. Liu, K., Y. Tian, and L. Jiang, Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Progress in Materials Science, 2013. 58(4): p. 503-564.
9. Yang, S., et al., Nanoparticles assembly-induced special wettability for bio-inspired materials. Particuology, 2013. 11(4): p. 361-370.
10. Wong, T.S., et al., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011. 477(7365): p. 443-7.
11. Kim, P., et al., Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates. Nano Letters, 2013. 13(4): p. 1793-1799.
12. Young, T., An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 1805. 95: p. 65-87.
13. Cottin-Bizonne, C., et al., Low-friction flows of liquid at nanopatterned interfaces. Nature materials, 2003. 2(4): p. 237-240.
14. Lafuma, A. and D. Quere, Superhydrophobic states. Nat Mater, 2003. 2(7): p. 457-60.
15. Zhang, D., et al., Wetting characteristics on hierarchical structures patterned by a femtosecond laser. Journal of Micromechanics and Microengineering, 2010. 20(7): p. 075029.
16. Shastry, A., M.J. Case, and K.F. Böhringer, Directing droplets using microstructured surfaces. Langmuir, 2006. 22(14): p. 6161-6167.
17. Sommers, A.D. and A.M. Jacobi, Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface. Journal of Micromechanics and Microengineering, 2006. 16(8): p. 1571-1578.
18. Bliznyuk, O., et al., Metastable droplets on shallow-grooved hydrophobic surfaces. Physical Review E, 2011. 83(4).
19. Chung, J.Y., J.P. Youngblood, and C.M. Stafford, Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter, 2007. 3(9): p. 1163.
20. Bliznyuk, O., et al., Initial spreading kinetics of high-viscosity droplets on anisotropic surfaces. Langmuir, 2010. 26(9): p. 6328-34.
21. Jansen, H.P., et al., Tuning kinetics to control droplet shapes on chemically striped patterned surfaces. Langmuir, 2012. 28(37): p. 13137-42.
22. Chen, Y., et al., Anisotropy in the wetting of rough surfaces. J Colloid Interface Sci, 2005. 281(2): p. 458-64.
23. Yoshimitsu, Z., et al., Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir, 2002. 18(15): p. 5818-5822.
24. Hyvaluoma, J., et al., Droplets on inclined rough surfaces. Eur Phys J E Soft Matter, 2007. 23(3): p. 289-93.
25. Cui, X.S. and W. Li, On the possibility of superhydrophobic behavior for hydrophilic materials. J Colloid Interface Sci, 2010. 347(1): p. 156-62.
26. Liu, J.-L., et al., Mechanisms of superhydrophobicity on hydrophilic substrates. Journal of Physics: Condensed Matter, 2007. 19(35): p. 356002.
27. Cao, L., H.-H. Hu, and D. Gao, Design and Fabrication of Micro-textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials. Langmuir, 2007. 23(8): p. 4310-4314.
28. Wang, J., et al., Superhydrophobic behavior achieved from hydrophilic surfaces. Applied Physics Letters, 2009. 95(8): p. 084104.
29. Feng, L., et al., Creation of a superhydrophobic surface from an amphiphilic polymer. Angewandte Chemie, 2003. 115(7): p. 824-826.
30. Hosono, E., et al., Superhydrophobic perpendicular nanopin film by the bottom-up process. Journal of the American Chemical Society, 2005. 127(39): p. 13458-13459.
31. Park, C.I., et al., Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials. J Colloid Interface Sci, 2009. 336(1): p. 298-303.
32. Barthlott, W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202(1): p. 1-8.
33. Guo, Z. and W. Liu, Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Science, 2007. 172(6): p. 1103-1112.
34. Neinhuis, C. and W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 1997. 79(6): p. 667-677.
35. Riedel, M., A. Eichner, and R. Jetter, Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta, 2003. 218(1): p. 87-97.
36. Gaume, L., et al., How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthropod Struct Dev, 2004. 33(1): p. 103-11.
37. Scholz, I., et al., Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. J Exp Biol, 2010. 213(Pt 7): p. 1115-25.
38. Bauer, U. and W. Federle, The insect-trapping rim of Nepenthes pitchers: surface structure and function. Plant signaling & behavior, 2009. 4(11): p. 1019-1023.
39. Bauer, U., et al., How to catch more prey with less effective traps: explaining the evolution of temporarily inactive traps in carnivorous pitcher plants. Proc Biol Sci, 2015. 282(1801): p. 20142675.
40. Gorb, E., et al., Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. J Exp Biol, 2005. 208(Pt 24): p. 4651-62.
41. Gaume, L., S. Gorb, and N. Rowe, Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. New Phytologist, 2002. 156(3): p. 479-489.
42. Merbach, M.A., et al., Patterns of nectar secretion in five Nepenthes species from Brunei Darussalam, Northwest Borneo, and implications for ant-plant relationships. 2001.
43. Bauer, U., H.F. Bohn, and W. Federle, Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar. Proc Biol Sci, 2008. 275(1632): p. 259-65.
44. Bohn, H.F. and W. Federle, Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci U S A, 2004. 101(39): p. 14138-43.
45. Kim, M., et al., A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold. Chem Commun (Camb), 2007(22): p. 2237-9.
46. Zhao, X.-M., Y. Xia, and G.M. Whitesides, Soft lithographic methods for nano-fabrication. Journal of Materials Chemistry, 1997. 7(7): p. 1069-1074.
47. Sun, M., et al., Artificial Lotus Leaf by Nanocasting. Langmuir, 2005. 21(19): p. 8978-8981.
48. Singh, R.A., et al., Replication of surfaces of natural leaves for enhanced micro-scale tribological property. Materials Science and Engineering: C, 2007. 27(4): p. 875-879.
49. Liu, Y. and G. Li, A new method for producing “Lotus Effect” on a biomimetic shark skin. Journal of Colloid and Interface Science, 2012. 388(1): p. 235-242.
50. Ghosh, N., A. Bajoria, and A.A. Vaidya, Surface Chemical Modification of Poly(dimethylsiloxane)-Based Biomimetic Materials: Oil-Repellent Surfaces. ACS Applied Materials & Interfaces, 2009. 1(11): p. 2636-2644.
51. Lee, T.W., O. Mitrofanov, and J.W. Hsu, Pattern‐Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio. Advanced Functional Materials, 2005. 15(10): p. 1683-1688.
52. Choi, H.K., et al., Fabrication of Ordered Nanostructured Arrays Using Poly(dimethylsiloxane) Replica Molds Based on Three-Dimensional Colloidal Crystals. Advanced Functional Materials, 2009. 19(10): p. 1594-1600.
53. Choi, H.K., et al., Fabrication of Ordered Nanostructured Arrays Using Poly (dimethylsiloxane) Replica Molds Based on Three‐Dimensional Colloidal Crystals. Advanced Functional Materials, 2009. 19(10): p. 1594-1600.
54. Kim, D.S., et al., Fabrication of PDMS micro/nano hybrid surface for increasing hydrophobicity. Microelectronic Engineering, 2009. 86(4-6): p. 1375-1378.
55. Cortese, B., et al., Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir, 2008. 24(6): p. 2712-2718.
56. Steele, A., I. Bayer, and E. Loth, Inherently Superoleophobic Nanocomposite Coatings by Spray Atomization. Nano Letters, 2009. 9(1): p. 501-505.
57. Jung, Y.C. and B. Bhushan, Mechanically Durable Carbon Nanotube−Composite Hierarchical Structures with Superhydrophobicity, Self-Cleaning, and Low-Drag. ACS Nano, 2009. 3(12): p. 4155-4163.
58. Wang, H., et al., One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chem Commun (Camb), 2008(7): p. 877-9.
59. He, Z., et al., Fabrication of superhydrophobic coating via a facile and versatile method based on nanoparticle aggregates. Applied Surface Science, 2012. 258(7): p. 2544-2550.
60. Basu, B.J., V. Dinesh Kumar, and C. Anandan, Surface studies on superhydrophobic and oleophobic polydimethylsiloxane–silica nanocomposite coating system. Applied Surface Science, 2012. 261: p. 807-814.
61. Zhou, H., et al., Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater, 2012. 24(18): p. 2409-12.
62. Li, K., et al., Study on the wetting behavior and theoretical models of polydimethylsiloxane/silica coating. Applied Surface Science, 2013. 279: p. 458-463.
63. Ghosh, N., A. Bajoria, and A.A. Vaidya, Surface chemical modification of poly(dimethylsiloxane)-based biomimetic materials: oil-repellent surfaces. ACS Appl Mater Interfaces, 2009. 1(11): p. 2636-44.
64. Nussbaum, P., et al., Simple technique for replication of micro-optical elements. Optical Engineering, 1998. 37(6): p. 1804-1808.
65. Kim, S.H., et al., Simple Route to Hydrophilic Microfluidic Chip Fabrication Using an Ultraviolet (UV)-Cured Polymer. Advanced Functional Materials, 2007. 17(17): p. 3493-3498.
66. Bhattacharya, S., et al., Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Microelectromechanical Systems, Journal of, 2005. 14(3): p. 590-597.
67. Kim, H.T. and O.C. Jeong, PDMS surface modification using atmospheric pressure plasma. Microelectronic Engineering, 2011. 88(8): p. 2281-2285.
68. Anderson, T.F., TECHNIQUES FOR THE PRESERVAATION OF THREE-DIMENSIONAL STRUCTURE IN PREPARING SPECIMENS FOR THE ELECTRON MICROSCOPE*. Transactions of the New York Academy of Sciences, 1951. 13(4 Series II): p. 130-134.
69. Hayat, M.A., Principles and techniques of scanning electron microscopy. Biological applications. Volume 1. 1974: Van Nostrand Reinhold Company.
70. Morris, J.K., A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. J. cell. Biol, 1965. 27: p. 137-139.
71. Kim, G.-D., et al., Synthesis and applications of TEOS/PDMS hybrid material by the sol–gel process. Applied Organometallic Chemistry, 1999. 13(5): p. 361-372.
72. Hsu, C.-P., Y.-M. Lin, and P.-Y. Chen, Hierarchical Structure and Multifunctional Surface Properties of Carnivorous Pitcher Plants Nepenthes. JOM, 2015. 67(4): p. 744-753.
73. Jeffree, C., E. Baker, and P. Holloway, Ultrastructure and recrystallization of plant epicuticular waxes. New Phytologist, 1975. 75(3): p. 539-549.
74. Wang, L., et al., Composite structure and properties of the pitcher surface of the carnivorous plant Nepenthes and its influence on the insect attachment system. Progress in Natural Science, 2009. 19(12): p. 1657-1664.
75. Chuang, S.-I. and J.-G. Duh, Exploration of surface hydrophilic properties on AISI 304 stainless steel and silicon wafer against aging after atmospheric pressure plasma treatment. Japanese Journal of Applied Physics, 2014. 53(11S): p. 11RA01.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *