|
[1] H. Jantunen, R. Rautioaho, A. Uusimaki, S. Leppavuori, "Compositions of MgTiO3-CaTiO3 Ceramic with Two Borosilicate Glasses for LTCC Technology". J. Eur. Ceram. Soc., 20 [14-15] 2331-2336 (2000). [2] S.H. Yoon, D.W. Kim, S.Y. Cho, K. S. Hong, "Phase Analysis and Microwave Dielectric Properties of LTCC TiO2 with Glass System". J. Eur. Ceram. Soc., 23 [14] 2549-2552 (2003). [3] M. Z. Jhou, J. H. Jean, "Low‐fire Processing of Microwave BaTi4O9 Dielectric with BaO-ZnO-B2O3 Glass". J. Am. Ceram. Soc., 89 [3] 786-791 (2006). [4] H. I. Hsiang, C. S. Hsi, C. C. Huang, S. L. Fu, "Low Temperature Sintering and Dielectric Properties of BaTiO3 with Glass Addition". Mater. Chem. Phys., 113 [2-3] 658-663 (2009). [5] Y. T. Shih, J. H. Jean, "Low-Fire Processing of Microwave BNBT-based High-K Dielectric with Li2O-ZnO-B2O3 Glass". J. Am. Ceram. Soc., 96 [12] 3849-3856 (2013). [6] H. Saito, H. Chazono, H. Kishi, N. Yamaoka, "X7R Multilayer Ceramic Capacitors with Nickel Electrodes". Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 30 [9B] 2307-2310 (1991). [7] J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano, T. Nomura, "Reliability of Multilayer Ceramic Capacitors with Nickel Electrodes". J. Power Sources, 60 [2] 199-203 (1996). [8] G. Y. Yang, S. I. Lee, Z. J. Liu, C. J. Anthony, E. C. Dickey, Z. K. Liu, C. A. Randall, "Effect of Local Oxygen Activity on Ni-BaTiO3 Interfacial Reactions". Acta Mater., 54 [13] 3513-3523 (2006). [9] Y. Mizuno, T. Hagiwara, H. Kishi, "Microstructural Design of Dielectrics for Ni-MLCC with Ultra-thin Active Layers". J. Ceram. Soc. Jpn., 115 [1342] 360-364 (2007). [10] C. S. Chiang, W. H. Lee, H. J. Yang, Y. C. Lee, "Development of Low Firing NPO Based on (Ca,Sr)(Ti,Zr)O-3 for Co-Firing Cu Electrode". Ferroelectrics, 435 110-118 (2012). [11] M. Vijatović, J. Bobić, B. Stojanović, "History and Challenges of Barium Titanate: Part I". Sci Sinter., 40 [2] 155-165 (2008). [12] P. Ming-Jen, C. A. Randall, "A Brief Introduction to Ceramic Capacitors". IEEE Electr. Insul. Mag., 26 [3] 44-50 (2010). [13] N. Yasuda, T. Kato, T. Hirai, M. Mizuno, K. Kurachi, I. Taga, "Dielectric Properties of BaTiO3, Sr- and Pb-Substituted BaTiO3 Ceramics Synthesized through Hydrothermal Method". Ferroelectrics, 154 [1] 331-336 (1994). [14] N. Nanakorn, P. Jalupoom, N. Vaneesorn, A. Thanaboonsombut, "Dielectric and Ferroelectric Properties of Ba(ZrxTi1−x)O3 Ceramics". Ceram. Int., 34 [4] 779-782 (2008). [15] N. Baskaran, H. Chang, "Effect of Sn Doping on the Phase Transformation Properties of Ferroelectric BaTiO3". J. Mater. Sci.: Mater. Electron., 12 [9] 527-531 (2001). [16] F. D. Morrison, A. M. Coats, D. C. Sinclair, A. R. West, "Charge Compensation Mechanisms in La-doped BaTiO3". J. Electroceram., 6 [3] 219-232 (2001). [17] L. Zhou, P. Vilarinho, J. Baptista, "Solubility of Bismuth Oxide in Barium Titanate". J. Am. Ceram. Soc., 82 [4] 1064-1066 (1999). [18] M.J. Wang, H. Yang, Q.L. Zhang, D. Yu, L. Hu, Z.S. Lin, Z.S. Zhang, "Low Temperature Sintering Properties of LiF-doped BTiO3-Based Dielectric Ceramics for AC MLCCs". J. Mater. Sci.: Mater. Electron., 26 [1] 162-167 (2015). [19] C. Y. Chang, W. N. Wang, C. Y. Huang, "Effect of MgO and Y2O3 Doping on the Formation of Core-Shell Structure in BaTiO3 Ceramics". J. Am. Ceram. Soc., 96 [8] 2570-2576 (2013). [20] H.J. Hagemann, H. Ihrig, "Valence Change and Phase Stability of 3d-doped BaTiO3 Annealed in Oxygen and Hydrogen". Phys. Rev. B, 20 [9] 3871-3878 (1979). [21] D. Hennings, G. Rosenstein, "Temperature-Stable Dielectrics Based on Chemically Inhomogeneous BaTiO3". J. Am. Ceram. Soc., 67 [4] 249-254 (1984). [22] H. Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imaeda, Y. Takahashi, H. Ohsato, T. Okuda, "The Effect of MgO and Rare-Earth Oxide on Formation Behavior of Core-shell Structure in BaTiO3". Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 36 [9B] 5954-5957 (1997). [23] C. A. Randall, S. F. Wang, D. Laubscher, J. P. Dougherty, W. Huebner, "Structure Property Relationships in Core-Shell BaTiO3-LiF Ceramics". J. Mater. Res., 8 [4] 871-879 (1993). [24] Z. B. Tian, X. H. Wang, Y. C. Zhang, J. Fang, T. H. Song, K. H. Hur, S. Lee, L. T. Li, "Formation of Core-shell Structure in Ultrafine-Grained BaTiO3-based Ceramics through Nanodopant Method". J. Am. Ceram. Soc., 93 [1] 171-175 (2010). [25] S.C. Jeon, B.K. Yoon, K.H. Kim, S.J. L. Kang, "Effects of Core/Shell Volumetric Ratio on the Dielectric-Temperature Behavior of BaTiO3". J. Adv. Ceram., 3 [1] 76-82 (2014). [26] T. R. Armstrong, R. C. Buchanan, "Influence of Core-Shell Grains on the Internal Stress State and Permittivity Response of Zirconia-Modified Barium Titanate". J. Am. Ceram. Soc., 73 [5] 1268-1273 (1990). [27] S.C. Jeon, C.S. Lee, S.J. L. Kang, "The Mechanism of Core/Shell Structure Formation During Sintering of BaTiO3-Based Ceramics". J. Am. Ceram. Soc., 95 [8] 2435-2438 (2012). [28] Y. Sun, H. Liu, H. Hao, L. Zhang, S. Zhang, "The Role of Co in the BaTiO3-Na0.5Bi0.5TiO3 Based X9R Ceramics". Ceram. Int., 41 [1] 931-939 (2015). [29] K. Yasukawa, M. Nishimura, Y. Nishihata, J. i. Mizuki, "Core-Shell Structure Analysis of BaTiO3 Ceramics by Synchrotron X-ray Diffraction". J. Am. Ceram. Soc., 90 [4] 1107-1111 (2007). [30] J. Herbert, "High Permittivity Ceramics Sintered in Hydrogen". Trans. Br. Ceram. Soc, 62 [8] 645 (1963). [31] N. Takeshi, K. Naoki, Y. Junko, A. Tomohiro, N. Yukie, S. Akira, "Aging Behavior of Ni-Electrode Multilayer Ceramic Capacitors with X7R Characteristics". Jpn. J. Appl. Phys., 34 [9S] 5389 (1995). [32] Y. Tsur, T. D. Dunbar, C. A. Randall, "Crystal and Defect Chemistry of Rare Earth Cations in BaTiO3". J. Electroceram., 7 [1] 25-34 (2001). [33] D. F. K. Hennings, "Dielectric Materials for Sintering in Reducing Atmospheres". J. Eur. Ceram. Soc., 21 [10-11] 1637-1642 (2001). [34] C.R. Chang, J.-H. Jean, "Crystallization Kinetics and Mechanism of Low-Dielectric, Low-Temperature, Cofirable CaO-B2O3-SiO2 Glass-Ceramics". J. Am. Ceram. Soc., 82 [7] 1725-1732 (1999). [35] J.H. Jean, Y.C. Fang, S. X. Dai, D. L. Wilcox, "Devitrification Kinetics and Mechanism of K2O-CaO-SrO-BaO-B2O3-SiO2 Glass-Ceramic". J. Am. Ceram. Soc., 84 [6] 1354-1360 (2001). [36] H. Naghib-Zadeh, C. Glitzky, I. Dorfel, T. Rabe, "Low Temperature Sintering of Barium Titanate Ceramics Assisted by Addition of Lithium Fluoride-containing Sintering Additives". J. Eur. Ceram. Soc., 30 [1] 81-86 (2010). [37] N. Ma, B.-P. Zhang, W.G. Yang, "Low-Temperature Sintering of Li2O-doped BaTiO3 Lead-Free Piezoelectric Ceramics". J. Electroceram., 28 [4] 275-280 (2012). [38] A. Das Sharma, N. Halder, S. K. Khan, A. Sen, H. S. Maiti, "Effect of Lithium Borate Flux Composition on the Dielectric Properties of BaTiO3-based Capacitor Formulations". J. Mater. Sci. Lett., 17 [18] 1577-1579 (1998). [39] C. K. Sun, X. H. Wang, L. T. Li, "Low Sintering of X7R Ceramics Based on Barium Titanate with SiO2-B2O3-Li2O Sintering Additives in Reducing Atmosphere". Ceram. Int., 38 S49-S52 (2012). [40] C. Sun, X. Wang, C. Ma, L. Li, "Low‐Temperature Sintering Barium Titanate‐Based X8R Ceramics with Nd2O3 Dopant and ZnO-B2O3 Flux Agent". J. Am. Ceram. Soc., 92 [7] 1613-1616 (2009). [41] S. F. Wang, T. C. K. Yang, Y. R. Wang, Y. Kuromitsu, "Effect of Glass Composition on the Densification and Dielectric Properties of BaTiO3 Ceramics". Ceram. Int., 27 [2] 157-162 (2001). [42] H. I. Hsiang, C. S. Hsi, C. C. Huang, S. L. Fu, "Sintering Behavior and Dielectric Properties of BaTiO3 Ceramics with Glass Addition for Internal Capacitor of LTCC". J. Alloys Compd., 459 [1-2] 307-310 (2008). [43] J.H. Jean, T. K. Gupta, "Liquid-Phase Sintering in the Glass-Cordierite System". J. Mater. Sci., 27 [6] 1575-1584 (1992). [44] M. Valant, D. Suvorov, R. C. Pullar, K. Sarma, N. M. Alford, "A Mechanism for Low-Temperature Sintering". J. Eur. Ceram. Soc., 26 [13] 2777-2783 (2006). [45] D.D. Lee, S.J. L. Kang, D. N. Yoon, "Mechanism of Grain Growth and α-β′ Transformation During Liquid-Phase Sintering of β′-Sialon". J. Am. Ceram. Soc., 71 [9] 803-806 (1988). [46] W. D. Kingery, H.K. Bowen, D.R. Uhlmann, "Introduction to Ceramics". Wiley (1960). [47] Y. Park, Y. H. Kim, H. G. Kim, "The Effect of Grain Size on Dielectric Behavior of BaTiO3 Based X7R Materials". Mater. Lett., 28 [1-3] 101-106 (1996). [48] T. M. Shaw, S. Trolier-McKinstry, P. C. McIntyre, "The Properties of Ferroelectric Films at Small Dimensions". Annu. Rev. Mater. Sci., 30 [1] 263-298 (2000). [49] Z. Zhao, V. Buscaglia, M. Viviani, M. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, "Grain-Size Effects on the Ferroelectric Behavior of Dense Nanocrystalline BaTiO3 Ceramics". Phys. Rev. B, 70 [2] (2004). [50] S.C. Jeon, S.J. L. Kang, "Coherency Strain Enhanced Dielectric-Temperature Property of Rare-Earth Doped BaTiO3". Appl. Phys. Lett., 102 [11] 112915 (2013). [51] S.C. Jeon, S.J. L. Kang, "Oxidation-Induced Strain Relaxation and Related Dielectric-Temperature Behavior in Core/Shell Grained BaTiO3". J. Electroceram., 35 [1] 129-134 (2015). [52] M. H. Frey, D. A. Payne, "Grain-Size Effect on Structure and Phase Transformations for Barium Titanate". Phys. Rev. B, 54 [5] 3158-3168 (1996).
|