帳號:guest(18.119.135.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾傅寧
作者(外文):Tseng, Fu Ning
論文名稱(中文):Li2O-ZnO-B2O3 添加劑對低溫燒結 BaTiO3基X7R陶瓷的介電性質之影響
論文名稱(外文):Effect of Li2O-ZnO-B2O3 Additives on Dielectric Properties of Low-fire BaTiO3-based X7R Ceramics
指導教授(中文):簡朝和
指導教授(外文):Jean, Jau Ho
口試委員(中文):許志雄
李嘉甄
曾傅寧
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031552
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:51
中文關鍵詞:BaTiO3低溫燒結X7R還原氣氛介電性質
外文關鍵詞:BaTiO3Low-temperature sinteringX7RReducing atmosphereDielectric properties
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
BaTiO3為常應用在積層陶瓷電容器的陶瓷電介質,而為了降低積層陶瓷電容器生產成本,開發出能夠與Cu電極共燒的BaTiO3基陶瓷成為重要發展目標之一。本研究使用商用抗還原之BaTiO3基X7R陶瓷粉末,添加Li2O含量不同的Li2O-ZnO-B2O3玻璃助燒劑(LZB-G)與Li2O-ZnO-B2O3混合物助燒劑(LZB-M),並在950 oC還原氣氛下燒結兩小時後得到試片。結果顯示添加LZB-M的緻密效果較好,且隨Li2O含量增加愈緻密,原因為與BaTiO3反應產生氧空缺,提升原子擴散速度提升而較快達成緻密。對於介電常數,X7R+LZB-M擁有較高的介電常數,且介電常數隨Li2O增加而上升,分析後得知這是由試片緻密度、殘留玻璃相的多寡、晶格常數c與a比值的不同所導致。在介電常數對溫度穩定性方面,X7R+LZB-G有較好的表現,且Li2O愈少愈穩定,而從Li2O含量30 mol%X7R+LZB-M試片的TEM影像觀察到核部與殼層之間為半共格界面,推論此條件試片具有較小的應變,因此較無法抑制對溫度的不穩定性。最後本研究經由XRD峰擬合,得知c/a與立方相比例都隨Li2O增加而增加,在相同Li2O含量下X7R+LZB-M具有較高的c/a與立方相比例,進一步驗證在前幾節的所推論的結果。
BaTiO3 is the dielectric ceramic which is usually used in multilayer ceramic capacitors. In order to decrease the manufacturing cost of multilayer ceramic capacitors, developing the BaTiO3-based X7R ceramic which can cofire with Cu electrodes becomes one of the important developing target. In this research, an as-received non-reducible BaTiO3-based X7R ceramic powder was used with the addition of Li2O-ZnO-B2O3 glass sintering aids (LZB-G) and Li2O-ZnO-B2O3 mixture sintering aids (LZB-M). Samples were sintered at 950 oC for 2 hours in the reducing atmosphere. The densification of X7R+LZB-M samples is better than that of X7R+LZB-G samples and the densification of samples increases as Li2O content increases. The results are attributed to the reaction between sintering aids and BaTiO3 which creates oxygen vacancies. The oxygen vacancies lead to higher diffusion rate and promote the densification. The dielectric constant of X7R+LZB-M samples is higher than that of X7R+LZB-G samples under the condition of the same Li2O content. Furthermore, the dielectric constant of samples increases as the amount of Li2O increases. By analysis, it is concluded that the densification of samples, residual glassy state, and c/a cause the difference between dielectric constants. X7R+LZB-G samples show higher temperature stability of the dielectric constants. Moreover, the temperature stability of the dielectric constants of samples enhances as the Li2O decreases. By TEM observation, semi-coherent interfaces between core and shell are found in the X7R+LZB-M sample with 30 mol% Li2O. The lower temperature stability in X7R+LZB-M sample with 30 mol% Li2O is caused by the lower strain present in the core-shell structure. XRD fitting is performed and the results show that c/a and the fraction of cubic phase both increase as the amount of Li2O increases, which consists with the conclusion from the previous sections.
第一章 前言 1
1.1 MLCC簡介 1
1.2 BaTiO3晶體結構與介電特性 2
1.3 BaTiO3溫度穩定性的改善 3
1.3.1 EIA標準 3
1.3.2 離子取代 4
1.3.3 核-殼結構 5
1.4 抗還原型BaTiO3 6
1.5 BaTiO3的低溫燒結系統 8
1.6 研究動機與內容 9
第二章 實驗步驟 10
2.1 原料 10
2.2 試片製備 10
2.3 相對燒結密度量測 11
2.4 物相分析 11
2.5 微結構觀察 12
2.6介電性質量測 12
第三章 結果與討論 13
3.1 物相分析 13
3.2 相對燒結緻密度(RSD) 13
3.3 燒結與晶粒成長機制 14
3.4 介電常數 16
3.5 介電損失 17
3.6 容溫變化率(TCC) 17
3.7 X7R+LZB核-殼結構 18
3.8 XRD峰形擬合 20
第四章 結論 24
參考文獻 26
[1] H. Jantunen, R. Rautioaho, A. Uusimaki, S. Leppavuori, "Compositions of MgTiO3-CaTiO3 Ceramic with Two Borosilicate Glasses for LTCC Technology". J. Eur. Ceram. Soc., 20 [14-15] 2331-2336 (2000).
[2] S.H. Yoon, D.W. Kim, S.Y. Cho, K. S. Hong, "Phase Analysis and Microwave Dielectric Properties of LTCC TiO2 with Glass System". J. Eur. Ceram. Soc., 23 [14] 2549-2552 (2003).
[3] M. Z. Jhou, J. H. Jean, "Low‐fire Processing of Microwave BaTi4O9 Dielectric with BaO-ZnO-B2O3 Glass". J. Am. Ceram. Soc., 89 [3] 786-791 (2006).
[4] H. I. Hsiang, C. S. Hsi, C. C. Huang, S. L. Fu, "Low Temperature Sintering and Dielectric Properties of BaTiO3 with Glass Addition". Mater. Chem. Phys., 113 [2-3] 658-663 (2009).
[5] Y. T. Shih, J. H. Jean, "Low-Fire Processing of Microwave BNBT-based High-K Dielectric with Li2O-ZnO-B2O3 Glass". J. Am. Ceram. Soc., 96 [12] 3849-3856 (2013).
[6] H. Saito, H. Chazono, H. Kishi, N. Yamaoka, "X7R Multilayer Ceramic Capacitors with Nickel Electrodes". Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 30 [9B] 2307-2310 (1991).
[7] J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano, T. Nomura, "Reliability of Multilayer Ceramic Capacitors with Nickel Electrodes". J. Power Sources, 60 [2] 199-203 (1996).
[8] G. Y. Yang, S. I. Lee, Z. J. Liu, C. J. Anthony, E. C. Dickey, Z. K. Liu, C. A. Randall, "Effect of Local Oxygen Activity on Ni-BaTiO3 Interfacial Reactions". Acta Mater., 54 [13] 3513-3523 (2006).
[9] Y. Mizuno, T. Hagiwara, H. Kishi, "Microstructural Design of Dielectrics for Ni-MLCC with Ultra-thin Active Layers". J. Ceram. Soc. Jpn., 115 [1342] 360-364 (2007).
[10] C. S. Chiang, W. H. Lee, H. J. Yang, Y. C. Lee, "Development of Low Firing NPO Based on (Ca,Sr)(Ti,Zr)O-3 for Co-Firing Cu Electrode". Ferroelectrics, 435 110-118 (2012).
[11] M. Vijatović, J. Bobić, B. Stojanović, "History and Challenges of Barium Titanate: Part I". Sci Sinter., 40 [2] 155-165 (2008).
[12] P. Ming-Jen, C. A. Randall, "A Brief Introduction to Ceramic Capacitors". IEEE Electr. Insul. Mag., 26 [3] 44-50 (2010).
[13] N. Yasuda, T. Kato, T. Hirai, M. Mizuno, K. Kurachi, I. Taga, "Dielectric Properties of BaTiO3, Sr- and Pb-Substituted BaTiO3 Ceramics Synthesized through Hydrothermal Method". Ferroelectrics, 154 [1] 331-336 (1994).
[14] N. Nanakorn, P. Jalupoom, N. Vaneesorn, A. Thanaboonsombut, "Dielectric and Ferroelectric Properties of Ba(ZrxTi1−x)O3 Ceramics". Ceram. Int., 34 [4] 779-782 (2008).
[15] N. Baskaran, H. Chang, "Effect of Sn Doping on the Phase Transformation Properties of Ferroelectric BaTiO3". J. Mater. Sci.: Mater. Electron., 12 [9] 527-531 (2001).
[16] F. D. Morrison, A. M. Coats, D. C. Sinclair, A. R. West, "Charge Compensation Mechanisms in La-doped BaTiO3". J. Electroceram., 6 [3] 219-232 (2001).
[17] L. Zhou, P. Vilarinho, J. Baptista, "Solubility of Bismuth Oxide in Barium Titanate". J. Am. Ceram. Soc., 82 [4] 1064-1066 (1999).
[18] M.J. Wang, H. Yang, Q.L. Zhang, D. Yu, L. Hu, Z.S. Lin, Z.S. Zhang, "Low Temperature Sintering Properties of LiF-doped BTiO3-Based Dielectric Ceramics for AC MLCCs". J. Mater. Sci.: Mater. Electron., 26 [1] 162-167 (2015).
[19] C. Y. Chang, W. N. Wang, C. Y. Huang, "Effect of MgO and Y2O3 Doping on the Formation of Core-Shell Structure in BaTiO3 Ceramics". J. Am. Ceram. Soc., 96 [8] 2570-2576 (2013).
[20] H.J. Hagemann, H. Ihrig, "Valence Change and Phase Stability of 3d-doped BaTiO3 Annealed in Oxygen and Hydrogen". Phys. Rev. B, 20 [9] 3871-3878 (1979).
[21] D. Hennings, G. Rosenstein, "Temperature-Stable Dielectrics Based on Chemically Inhomogeneous BaTiO3". J. Am. Ceram. Soc., 67 [4] 249-254 (1984).
[22] H. Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imaeda, Y. Takahashi, H. Ohsato, T. Okuda, "The Effect of MgO and Rare-Earth Oxide on Formation Behavior of Core-shell Structure in BaTiO3". Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 36 [9B] 5954-5957 (1997).
[23] C. A. Randall, S. F. Wang, D. Laubscher, J. P. Dougherty, W. Huebner, "Structure Property Relationships in Core-Shell BaTiO3-LiF Ceramics". J. Mater. Res., 8 [4] 871-879 (1993).
[24] Z. B. Tian, X. H. Wang, Y. C. Zhang, J. Fang, T. H. Song, K. H. Hur, S. Lee, L. T. Li, "Formation of Core-shell Structure in Ultrafine-Grained BaTiO3-based Ceramics through Nanodopant Method". J. Am. Ceram. Soc., 93 [1] 171-175 (2010).
[25] S.C. Jeon, B.K. Yoon, K.H. Kim, S.J. L. Kang, "Effects of Core/Shell Volumetric Ratio on the Dielectric-Temperature Behavior of BaTiO3". J. Adv. Ceram., 3 [1] 76-82 (2014).
[26] T. R. Armstrong, R. C. Buchanan, "Influence of Core-Shell Grains on the Internal Stress State and Permittivity Response of Zirconia-Modified Barium Titanate". J. Am. Ceram. Soc., 73 [5] 1268-1273 (1990).
[27] S.C. Jeon, C.S. Lee, S.J. L. Kang, "The Mechanism of Core/Shell Structure Formation During Sintering of BaTiO3-Based Ceramics". J. Am. Ceram. Soc., 95 [8] 2435-2438 (2012).
[28] Y. Sun, H. Liu, H. Hao, L. Zhang, S. Zhang, "The Role of Co in the BaTiO3-Na0.5Bi0.5TiO3 Based X9R Ceramics". Ceram. Int., 41 [1] 931-939 (2015).
[29] K. Yasukawa, M. Nishimura, Y. Nishihata, J. i. Mizuki, "Core-Shell Structure Analysis of BaTiO3 Ceramics by Synchrotron X-ray Diffraction". J. Am. Ceram. Soc., 90 [4] 1107-1111 (2007).
[30] J. Herbert, "High Permittivity Ceramics Sintered in Hydrogen". Trans. Br. Ceram. Soc, 62 [8] 645 (1963).
[31] N. Takeshi, K. Naoki, Y. Junko, A. Tomohiro, N. Yukie, S. Akira, "Aging Behavior of Ni-Electrode Multilayer Ceramic Capacitors with X7R Characteristics". Jpn. J. Appl. Phys., 34 [9S] 5389 (1995).
[32] Y. Tsur, T. D. Dunbar, C. A. Randall, "Crystal and Defect Chemistry of Rare Earth Cations in BaTiO3". J. Electroceram., 7 [1] 25-34 (2001).
[33] D. F. K. Hennings, "Dielectric Materials for Sintering in Reducing Atmospheres". J. Eur. Ceram. Soc., 21 [10-11] 1637-1642 (2001).
[34] C.R. Chang, J.-H. Jean, "Crystallization Kinetics and Mechanism of Low-Dielectric, Low-Temperature, Cofirable CaO-B2O3-SiO2 Glass-Ceramics". J. Am. Ceram. Soc., 82 [7] 1725-1732 (1999).
[35] J.H. Jean, Y.C. Fang, S. X. Dai, D. L. Wilcox, "Devitrification Kinetics and Mechanism of K2O-CaO-SrO-BaO-B2O3-SiO2 Glass-Ceramic". J. Am. Ceram. Soc., 84 [6] 1354-1360 (2001).
[36] H. Naghib-Zadeh, C. Glitzky, I. Dorfel, T. Rabe, "Low Temperature Sintering of Barium Titanate Ceramics Assisted by Addition of Lithium Fluoride-containing Sintering Additives". J. Eur. Ceram. Soc., 30 [1] 81-86 (2010).
[37] N. Ma, B.-P. Zhang, W.G. Yang, "Low-Temperature Sintering of Li2O-doped BaTiO3 Lead-Free Piezoelectric Ceramics". J. Electroceram., 28 [4] 275-280 (2012).
[38] A. Das Sharma, N. Halder, S. K. Khan, A. Sen, H. S. Maiti, "Effect of Lithium Borate Flux Composition on the Dielectric Properties of BaTiO3-based Capacitor Formulations". J. Mater. Sci. Lett., 17 [18] 1577-1579 (1998).
[39] C. K. Sun, X. H. Wang, L. T. Li, "Low Sintering of X7R Ceramics Based on Barium Titanate with SiO2-B2O3-Li2O Sintering Additives in Reducing Atmosphere". Ceram. Int., 38 S49-S52 (2012).
[40] C. Sun, X. Wang, C. Ma, L. Li, "Low‐Temperature Sintering Barium Titanate‐Based X8R Ceramics with Nd2O3 Dopant and ZnO-B2O3 Flux Agent". J. Am. Ceram. Soc., 92 [7] 1613-1616 (2009).
[41] S. F. Wang, T. C. K. Yang, Y. R. Wang, Y. Kuromitsu, "Effect of Glass Composition on the Densification and Dielectric Properties of BaTiO3 Ceramics". Ceram. Int., 27 [2] 157-162 (2001).
[42] H. I. Hsiang, C. S. Hsi, C. C. Huang, S. L. Fu, "Sintering Behavior and Dielectric Properties of BaTiO3 Ceramics with Glass Addition for Internal Capacitor of LTCC". J. Alloys Compd., 459 [1-2] 307-310 (2008).
[43] J.H. Jean, T. K. Gupta, "Liquid-Phase Sintering in the Glass-Cordierite System". J. Mater. Sci., 27 [6] 1575-1584 (1992).
[44] M. Valant, D. Suvorov, R. C. Pullar, K. Sarma, N. M. Alford, "A Mechanism for Low-Temperature Sintering". J. Eur. Ceram. Soc., 26 [13] 2777-2783 (2006).
[45] D.D. Lee, S.J. L. Kang, D. N. Yoon, "Mechanism of Grain Growth and α-β′ Transformation During Liquid-Phase Sintering of β′-Sialon". J. Am. Ceram. Soc., 71 [9] 803-806 (1988).
[46] W. D. Kingery, H.K. Bowen, D.R. Uhlmann, "Introduction to Ceramics". Wiley (1960).
[47] Y. Park, Y. H. Kim, H. G. Kim, "The Effect of Grain Size on Dielectric Behavior of BaTiO3 Based X7R Materials". Mater. Lett., 28 [1-3] 101-106 (1996).
[48] T. M. Shaw, S. Trolier-McKinstry, P. C. McIntyre, "The Properties of Ferroelectric Films at Small Dimensions". Annu. Rev. Mater. Sci., 30 [1] 263-298 (2000).
[49] Z. Zhao, V. Buscaglia, M. Viviani, M. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, "Grain-Size Effects on the Ferroelectric Behavior of Dense Nanocrystalline BaTiO3 Ceramics". Phys. Rev. B, 70 [2] (2004).
[50] S.C. Jeon, S.J. L. Kang, "Coherency Strain Enhanced Dielectric-Temperature Property of Rare-Earth Doped BaTiO3". Appl. Phys. Lett., 102 [11] 112915 (2013).
[51] S.C. Jeon, S.J. L. Kang, "Oxidation-Induced Strain Relaxation and Related Dielectric-Temperature Behavior in Core/Shell Grained BaTiO3". J. Electroceram., 35 [1] 129-134 (2015).
[52] M. H. Frey, D. A. Payne, "Grain-Size Effect on Structure and Phase Transformations for Barium Titanate". Phys. Rev. B, 54 [5] 3158-3168 (1996).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *