帳號:guest(18.118.163.176)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳建華
作者(外文):Chen, Chien Hua
論文名稱(中文):銀奈米粒子修飾氧化鋅奈米線於光觸媒應用
論文名稱(外文):Application of ZnO Nanowires Modified with Silver Nanoparticles in Photocatalysis
指導教授(中文):林鶴南
指導教授(外文):Lin, Heh Nan
口試委員(中文):李紫原
徐文光
口試委員(外文):Lee, Chi Young
Hsu,Wen Kuang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031550
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:57
中文關鍵詞:氧化鋅
外文關鍵詞:ZnO
相關次數:
  • 推薦推薦:0
  • 點閱點閱:188
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
氧化鋅具有無毒、生物可相容性、價格便宜、很強的光生電荷能力,因此氧化鋅為一個良好的光觸媒材料,但是氧化鋅在可見光區吸收強度低與電子電洞再複合率較高,因此本實驗利用光還原法將銀奈米顆粒還原至氧化鋅奈米線上,藉由銀的修飾可以增強光觸媒材料的吸收光能力,另外銀與氧化鋅的異質接面可以降低電子電洞的複合率進而提升光觸媒效率。相較於昂貴的傳統矽基板材料,本實驗以紙作為基底、水溶液法成長氧化鋅,大幅降低光觸媒成本以期未來能應用於工業上。
藉由掃描式電子顯微鏡確認氧化鋅表面形貌與奈米顆粒結構,以5×10^(-2) M 硝酸銀光還原2分鐘可以得到最佳的銀奈米顆粒修飾濃度,推測其有最好的光觸媒效率,而5×10^(-2) M 硝酸銀光還原2.5分鐘或1×10^(-3) M硝酸銀光還原6分鐘後光還原後的奈米顆粒會聚集成團聚物或薄膜於氧化鋅的頂端,此團聚物或薄膜會抑制光觸媒效率;能量色散X-射線光譜分析得到本材料內部並無其他雜質的存在;螢光光譜分析圖顯示修飾後的氧化鋅螢光光譜強度有明顯的下降,其中以5×10^(-2) M硝酸銀光還原的氧化鋅螢光光譜強度下降最多,推斷高濃度且均勻的銀奈米粒子顆粒更能有效抑制電子電洞再複合。
光觸媒分解實驗以面積1.5×1.5 cm^2的紙作為基板並成長氧化鋅或銀/氧化鋅在紫外燈光照下分解10 µM羅丹明B (Rhodamine B)。原生氧化鋅一階反應常數為0.0113 min^(-1),以5×10^(-2) M 硝酸銀還原銀奈米顆粒兩分鐘於氧化鋅上可得到最佳一階反應常數0.0218 min^(-1),其效率為原生氧化鋅的1.93倍,成功以簡單的光還原方法成功的製備出效率較好的光觸媒複合材料。
成長於紙上的氧化鋅奈米線對於氣體感測也有良好的反應,在紫外光條件與大氣作為背景氣體下感測1 ppm NO氣體下最高反應可達89%,但以銀奈米顆粒修飾成長於紙上的氧化鋅則無法作為良好的氣體感測材料,這是因為紙吸附了大量的硝酸銀,光還原下銀在紙上形成了連續性的銀薄膜,此銀薄膜大幅地降低了材料的電阻使其偏離了適當的響應電流範圍。
ZnO is a suitable photocatalytic material from non-toxic, biocompatibility, low-cost, and strong photo-induced electron-hole pairs. However, ZnO has the limitation of absorbing visible light and fast recombination rate of electron-hole pairs. In this work, ZnO nanowires were modified with Ag nanoparticles. Owing to the improvement of the Ag/ZnO absorption ability, the photocatalytic performance could be enhanced. Moreover, the superior photocatalytic performance of the Ag/ZnO can be ascribed to the heterostructure which lowers the recombination rate of photo-excited electron-hole pairs. Compared to the traditional Si substrate, we took paper as substrates and grow ZnO nanowires by low-cost solution method to lower the price and applied in the industry.
The scanning electron microscopy indicates the morphologies and structures of nanowires and nanoparticles, the ZnO nanowires modified with the best concentration of Ag nanoparticles showed the best photocatalytic performance under the condition of 2-min photoreduction with 5×10^(-2) M silver nitrate. The Ag nanoparticles formed nanoclusters or thin film on the top of ZnO nanowires, which lowers the photocatalytic performance, under the condition of 2.5-min photoreduction with 5×10^(-2) M silver nitrate or after 6-min photoreduction with 1×10^(-3) M silver nitrate. The energy dispersive spectrometer presents that there are no impurities inside the material. The photoluminescence spectra show that the decreasing of Ag/ZnO, especially the Ag/ZnO photoreduced with 5×10^(-2) M silver nitrate, compares to the as-grown ZnO, revealing that the recombination of electron-hole pairs is more likely reduced by high concentration and uniform distribution of Ag nanoparticles.
The photocatalytic performance of the ZnO or Ag/ZnO nanowires on paper substrate with 1.5 cm by 1.5 cm surface area was evaluated by degrading a 10 µM rhodamine B solution under the illumination of ultraviolet light. The best first-order kinetic constant of the Ag/ZnO nanowires is 0.218 min^(-1). It is 1.93 times as high as as-grow ZnO nanowires (0.0113 min^(-1)). It showed a high-efficiency photocatalytic material by a simple photoreduction method successfully.
The ZnO nanowires on paper substrate also showed a good response of the gas sensor, which has been utilized to sense 1 ppm NO gas under UV light and background ambient gas and showing response up to 89%. However, the ZnO nanowires modified with Ag nanoparticles were not able to be a good gas sensor device. Because the paper sucked up silver nitrate under the photoreduction, the Ag formed a continuous thin film on the paper. This Ag thin film lowers the resistance of the gas sensor material dramatically and diverts the electric current from the proper response region.
誌謝 I
摘要 II
Abstract IV
圖表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 5
2.1 氧化鋅奈米線 5
2.1.1 晶體結構 5
2.1.2 奈米線成長方法 6
2.1.3 本質摻雜形成n-type半導體 10
2.1.4 氧化鋅光學性能 12
2.2 光觸媒催化反應 13
2.2.1 光觸媒原理 13
2.2.2 光觸媒光分解水材料選擇 15
2.2.3 提升光觸媒反應的機制與方法 18
2.3 光還原改質法 20
2.4 光觸媒應用 21
2.5 氧化鋅氣體感測 24
第三章 實驗儀器與方法 25
3.1 實驗設計 25
3.2 材料製作流程 26
3.2.1 基板前處理 26
3.2.2 成長氧化鋅奈米線 26
3.2.3 銀/氧化鋅奈米複合物的製備 26
3.3 分析儀器與樣品準備 28
3.3.1 掃描式電子顯微鏡 28
3.3.2 能量色散X射線光譜 28
3.3.3 螢光光譜儀 28
3.4 光觸媒催化反應與量測 28
3.4.1 光觸媒反應系統 28
3.4.2 量測系統 29
3.4.3 光觸媒催化反應實驗步驟 30
3.4.4 吸收光譜量測步驟 30
3.5 氧化鋅氣體感測 31
3.5.1 氣體感測器製作 31
3.5.2 一氧化氮氣體感測 32
3.5.3 氣體感測系統架構 32
3.5.4 一氧化氮濃度計算 33
3.5.5 氣體感測操作步驟 34
第四章 結果與討論 36
4.1 材料特性分析 36
4.1.1 表面形貌 36
4.1.2 結構與組成 40
4.1.3 光致發光性質 41
4.2 RhB的自然分解速率 43
4.3 氧化鋅奈米線於紫外光燈下光觸媒效率 44
4.4 光觸媒效率提升原因 48
4.5 氧化鋅氣體感測 51
第五章 結論 54
參考文獻 56
1. Fujishima, A.; Honda, K. Nature 1972, 238, 37.
2. Banerjee, S.; Dionysiou, D. D.; Pillai, S. C. Appl Catal B 2015, 176-177, 396.
3. Han, C.; Chen, Z.; Zhang N.; Colmenares J. C.; Xu, Y. J. Adv Funct Mater 2015, 25, 221.
4. Li, Q.; Li X.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. Adv Funct Mater 2015, 5, 1500010.
5. Senthilnathan, J.; Philip, L. Chem Eng J 2010, 161, 83.
6. Liu, X. J.; Pan, L. K.; Lv, T.; Sun, Z. J Alloy Compd 2014, 583, 390.
7. Chen, H. H.; Nanayakkara, C. E.; Grassian, V. H. Chem Rev 2012, 112, 5919.
8. Sadowski, R.; Strus, M.; Buchalska, M.; Heczko, P. B.; Macyk, W. Photoch Photobio Sci
2015, 14, 514.
9. Sayilkan, F.; Asilturk M.; Kiraz, N.; Burunkaya, E.; Arpac E.; Sayilkan, H. J Hazard Mater 2009, 162, 1309.
10. Chang, J. H.; Lin, H. N. Mater Lett 2014, 132, 134.
11. Chang, Y. H.; Chiang, M. Y.; Chang, J. H.; Lin, H. N. Mater Lett 2015, 138, 85.
12. Yin, J.; Zang, Y.; Yue, C.; Wu, Z. M.; Wu, S. T.; Li, J.; Wu, Z. H. J Mater Chem 2012, 22, 7902.
13. Zhang, Y. Y.; Xu, J.; Wang, Q. L.; Pan, Z. Z.; Ma, S. Y.; Chen, Q. M Mater Res Bull 2016, 73, 119.
14. Kaur, J.; Gupta, K; Kumar, V.; Bansal, S.; Singhal, S. Ceram Int 2016, 42, 2378.
15. Xiong, J. Y.; Sun, Q.; Chen, J.; Li, Z.; Dou, S. X. Cryst Eng Comm 2016, 18, 1713.
16. Pillai, S.; Seery, M.; Georgekutty, R. J Phys Chem 2008, 35, 13563.
17. Choi, Y. I.; Jung, H. J.; Shin, W. G.; Sohn, Y. Appl Surf Sci 2015, 365, 615.
18. Bechambi, O.; Najjar, W.; Sayadi, S. J Taiwan Inst Chem 2016, 60, 496.
19. Sahu, D. R.; Liu, C. P.; Wang, R. C.; Kuo, C. L.; Huang, J. L. Int J Appl Ceram Tec 2013, 10, 814.
20. Wang, Z. L. J Phys-Condens Mat 2004, 16, R829.
21. Guo, M.; Diao, P.; Cai, S. J Solid State Chem 2005, 178, 1864.
22. Liu, B.; Zeng, H.C. J Am Chem Soc 2003, 125, 4430.
23. Vayssieres, L. Adv Mater 2003, 15, 464.
24. Vayssieres, L.; Keis, K.; Lindquist, S. E.; Hagfeldt, A. J Phys Chem B 2001, 105, 3350.
25. Zhang, R.; Kerr, L. L. J. Solid State Chem 2007, 180, 988.
26. Wagner, R. S.; Ellis, W. C. Appl Phys Lett 1964, 4, 89.
27. Wu, Y. Y.; Yang, P. D. J Am Chem Soc 2001, 123, 3165.
28. Ho, S. T.; Chen, K. C.; Chen, H. A.; Lin, H. Y.; Cheng, C. Y.; Lin, H. N. Chem Mater 2007, 19, 4083.
29. Ho, S. T.; Wang, C. Y.; Liu, H. L.; Lin, H. N. Chem Phys Lett 2008, 463, 141.
30. Barnes, T. M.; Leaf, J.; Fry, C.; Wolden, C. A. J Cryst Growth 2005, 274, 412.
31. Cheng, A. J.; Tzeng, Y.; Zhou, Y.; Park, M.; Wu, T. H.; Shannon, C.; Wang, D.; Lee, W. Appl Phys Lett 2008, 92, 092113.
32. Barankin, M. D.; Gonzalez, I. E.; Ladwig, A. M.; Hicks, R. F. Sol Energ Mat Sol C 2007, 91, 924.
33. Schmidt-Mende, L.; MacManus-Driscoll, J. L. Mater Today 2007, 10, 40.
34. Park, W. I.; Jun, Y. H.; Jung, S. W.; Yi, G. C. Appl Phys Lett 2003, 82, 964.
35. Ahn, C. H.; Kim, Y. Y.; Kim, D. C.; Mohanta, S. K.; Cho, H. K. J Appl Phys 2009, 105, 013502.
36. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem Rev 1995, 95, 735.
37. Behnajady, M. A.; Modirshahla, N.; Hamzavi, R. J Hazard Mater 2006, 133, 226.
38. Hoffmann, M. R.; Choi, S. T. M. W.; Bahnemannt, D.W. Chem Rev 1995, 95, 69.
39. Kubota, J.; Domen, K. Electrochem Soc Interface 2013, 22, 57.
40. Grätzel, M. Nature 2001, 414, 338.
41. Wang, Z. Y.; Huang, B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.; Wang, P.; Liu, H. X.; Yu, J. X. J Phys Chem C 2009, 113, 4612.
42. Nayak, J.; Sahu, S. N.; Kasuya, J.; Nozaki, S. Appl Surf Sci 2008, 254, 7215.
43. Zheng, L. R.; Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M.; Zhu, J. F. Inorg Chem 2009, 48, 1819.
44. Chiang, M. Y.; Lin, H. N. Mater Lett 2015, 160, 440.
45. Li, Z. C.; Teng, Y.; Chen, C. C.; Lv S. S.; Wang, G. J.; Zhang, Z. J. Appl Surf Sci 2015, 327, 478.
46. Lin, Y. Y.; Xie, S. F.; Li, H.; Wang, X. Y. Chem Cat Chem 2014, 6, 2522.
47. Khanchandani, S.; Srivastava, P. K.; Kumar, S.; Ghosh, S.; Ganguli, A. K. Inorg Chem 2014, 53, 8902.
48. 熊君山; 王群英; 程晟; 劉先國 新型建築材料 2010, 5, 85.
49. Wang, L. W.; Kang, Y. F.; Liu, X. H.; Zhang, S. M.; Huang, W. P.; Wang, S. R. Sensor Actual B-Chem 2012, 162, 237.
50. 陳信宏 國立清華大學碩士學位論文 2013.
51. Chang, J. H.; Lin, H. N. J Nanomater 2014, 2014, 426457.
52. Kansal, S. L.; Singh, M.; Sud, D. J Hazard Mater 2007, 141, 581.
53. 江茂源 國立清華大學碩士學位論文 2015.
54. Ansari, S. A.; Khan, M. M.; Ansari, M. O.; Lee, J.; Cho, M. H. J. Phys. Chem. C, 2013, 117, 27023.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *