帳號:guest(18.226.226.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江珮甄
作者(外文):Chiang, Pei Chen
論文名稱(中文):奈米鑽石薄膜成長於氮化鎵基板之製程及結構分析
論文名稱(外文):Processings and characterizations of nanocrystalline diamond on GaN substrate
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan Hwa
口試委員(中文):林諭男
李紫原
口試委員(外文):Lin, I Nan
Lee, Chi Young
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031548
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:93
中文關鍵詞:奈米鑽石氮化鎵結構分析
外文關鍵詞:nanocrystalline diamondGaNcharacterization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
本研究以管爐製備氮化鎵薄膜,討論其成長溫度和通入氨氣的流量對成長氮化鎵的影響,找出成長氮化鎵薄膜的最佳條件;再使用微波輔助化學氣相沉積法成長鑽石薄膜於氮化鎵基板上,希望透過鑽石薄膜的良好熱傳導性質來改善傳統的發光二極體在氧化鋁上的散熱性質。成長鑽石薄膜的種類包括單層的超奈米晶鑽石薄膜 (Ultranano crystalline diamond, UNCD)及雙層複合膜,雙層複合膜是由兩層不同大小的鑽石晶粒所組合而成,利用掃描式電子顯微鏡(Scanning electron microscope, SEM)觀察其表面形貌及穿透式電子顯微鏡(Transmission electron microscopy, TEM)觀察微結構;再以X光繞射儀確認晶體結構,並利用拉曼光譜儀確定薄膜的性質。 研究結果顯示,以管爐成長氮化鎵的最佳條件在850 ℃下通入30 sccm氨氣成長三小時,在此條件下成長的薄膜具有帄滑的表面有利於成長鑽石薄膜。在氮化鎵的基板上成長鑽石薄膜並不容易,因此我們利用超音波震盪成核增加成核密度,並利用電漿化學氣相沉積法成長UNCD。在雙層膜部分以成長UNCD作為底層,可以成功成長奈米晶鑽石(Nanocrystalline diamond, NCD)/ UNCD雙層膜在氮化鎵薄膜上面,最後以SEM、TEM和拉曼光譜儀分析本實驗製備的薄膜特性。
In this study, we grow GaN film and investigated the influence of growing temperature and the flow rate of ammonia gas on the quality of the synthesized GaN thin film. Subsequently, we used the microwave plasma enhanced chemical vapor deposition to grow diamond film on GaN substrate. The objective of this study is to improve the thermal dissipation of a GaN substrate used in light emitting diode. In this regard, we fabricated the single and hybrid granular structured diamond films on GaN substrate. The hybrid diamond films are composed of diamond films with different grain size. We examined the morphology of the films by scanning electron microscope (SEM) and transmission electron microscope (TEM). The crystal structures of the samples were analyzed by X-ray diffractometer, and the bonding properties were characterized by Raman Spectroscopy. The results showed that the optimal conditions for growing GaN thin film is at 850 ℃ with 30 sccm ammonia gas flow. The film growth under these conditions has a smooth surface which is facilitate the growth of diamond films. For hybrid diamond film, we grow ultranano crystalline diamond (UNCD) as a bottom layer followed by grown nano crystalline diamond(NCD)/ UNCD hybrid structured diamond film. The properties of the as-synthesized NCD/UNCD hybrid diamond film were characterized by SEM, TEM and Raman.
目錄
摘要 ............................................................................................................................ I
Abstract ...................................................................................................................... II
致謝 ......................................................................................................................... III
目錄 ......................................................................................................................... IV
表目錄 .................................................................................................................. VIII
圖目錄 ..................................................................................................................... IX
第一章、緒論 ........................................................................................................... 1
1.1 前言 .............................................................................................................. 1
1.2 研究動機 ...................................................................................................... 1
第二章、文獻回顧 ................................................................................................... 3
2.1 氮化鎵的應用 .......................................................................................... 3
2.2 氮化鎵的結構特性 .................................................................................. 4
2.3 氮化鎵的基板選擇 .................................................................................. 4
2.4 氮化鎵的製程分類 .................................................................................. 6
2.4.1 有機金屬化學氣相沈積法 ............................................................... 6
2.4.2 分子束磊晶 ........................................................................................ 7
2.4.3 氫化物氣相磊晶法 ........................................................................... 7
V
2.4.4 管爐 .................................................................................................... 7
2.5 氮化鎵薄膜的分析 .................................................................................. 8
2.6 鑽石的基本性質 ...................................................................................... 8
2.6.1 鑽石薄膜的結構 ............................................................................... 8
2.6.2 鑽石薄膜的分類 ............................................................................... 9
2.7 鑽石薄膜成核機制 ................................................................................ 11
2.8 化學氣相沉積鑽石薄膜 ........................................................................ 12
2.8.1 在氫氣電漿系統下沉積鑽石薄膜 ................................................. 12
2.8.2 在氰氣電漿系統下沉積鑽石薄膜 ................................................. 13
2.9 鑽石薄膜的分析 .................................................................................... 14
第三章、實驗 ......................................................................................................... 23
3.1 實驗步驟 ................................................................................................ 23
3.1.1 以電漿氮化前處理 ......................................................................... 23
3.1.2 以管爐成長氮化鎵薄膜 ................................................................. 23
3.1.3 以超音波震盪在氮化鎵基板上成膜 ............................................. 24
3.1.4 在氰氣電漿下沉積超奈米晶鑽石 ................................................. 25
3.1.5 在氫氣和氰氣電漿下沉積奈米晶鑽石 ......................................... 25
3.1.6 雙層鑽石薄膜之成長 ..................................................................... 26
3.2 實驗儀器及材料分析儀器 .................................................................... 26
VI
3.2.1 自製簡易管爐.................................................................................. 26
3.2.2 微波電漿輔助化學氣相沉積系統 ................................................. 27
3.2.3 超音波震盪機.................................................................................. 27
3.2.4 掃描式電子顯微鏡 ......................................................................... 27
3.2.5 拉曼光譜分析.................................................................................. 28
3.2.6 X光繞射儀 ...................................................................................... 28
3.2.7 原子力顯微鏡.................................................................................. 29
3.2.8 穿透式電子顯微鏡 ......................................................................... 29
第四章、結果與討論 ............................................................................................. 35
4.1 成長氮化鎵薄膜 .................................................................................... 35
4.1.1 改變氧化鋁表面特性 ..................................................................... 35
4.1.2 以不同的成長溫度成長氮化鎵薄膜 ............................................. 35
4.1.3 以不同的氨氣流量成長氮化鎵薄膜 ............................................. 36
4.2 單層薄膜之形貌與鑑定 ........................................................................ 37
4.2.1 超奈米晶鑽石.................................................................................. 37
4.2.2 在超奈米晶鑽石中加入氫氣 ......................................................... 38
4.3 鑽石雙層薄膜之形貌與鑑定 ................................................................ 39
4.4 利用穿透式電子顯微鏡分析雙層鑽石薄膜 ........................................ 41
4.4.1 利用穿透式電子顯微鏡分析雙層鑽石薄膜橫截面 ..................... 41
VII
4.4.2 利用穿透式電子顯微鏡分析雙層鑽石薄膜組成 ......................... 42
第五章、結論 ......................................................................................................... 71
參考文獻 .................................................................................................................
參考文獻
[1] J. Wu and W. Walukiewicz, "Band gaps of InN and group III nitride alloys," Superlattices and Microstructures, Vol. 34, pp. 63-75, 2003.
[2] L. X. Benedict, T. Wethkamp, K. Wilmers, C. Cobet, N. Esser, E. L. Shirley, et al., "Dielectric function of wurtizite GaN and AlN thin films," Solid State Communications, Vol. 112, pp. 129-133, 1999.
[3] X. J. Ning, F. R. Chien, P. Pirouz, J. W. Yang, and M. A. Khan, "Growth defects in GaN films on sapphire: The probable origin of threading dislocations," Journal of Materials Research, Vol. 11, pp. 580-592, 1996.
[4] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, et al., "Effects of AlN buffer layer on crystallographic structure and on electrical and optical-properties of GaN and Ga1-xAlxN (0-less-than-x-less-than-or-equal-to -0.4) films grown on sapphire substrate by MOVPE," Journal of Crystal Growth, Vol. 98, pp. 209-219, 1989.
[5] P. R. Hageman, S. Haffouz, V. Kirilyuk, A. Grzegorczyk, and P. K. Larsen, "High quality GaN layers on Si(111) substrates: AlN buffer layer optimisation and insertion of a SiN intermediate layer," Physica Status Solidi a-Applied Research, Vol. 188, pp. 523-526, 2001.
[6] L. Liu and J. H. Edgar, "Substrates for gallium nitride epitaxy," Materials Science & Engineering R-Reports, Vol. 37, pp. 61-127, 2002.
[7] G. Ferro, H. Okumura, and S. Yoshida, "Comparison of thin GaN and AlN layers deposited by plasma assisted molecular beam epitaxy on 6H-SiC," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, Vol. 38, pp. 3634-3641,1999.
74
[8] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer ” Applied Physics Letters,Vol. 48, pp. 363,1986.
[9] S. Nakamura, T. Mukai, and M. Senoh, "High-power GaN p-n-junction blue-light-emitting diodes," Japanese Journal of Applied Physics Part 2-Letters, Vol. 30, pp. L1998-L2001, 1991.
[10] O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, "Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy," Applied Physics Letters, Vol. 71, pp. 2638-2640, 1997.
[11] S. Nakamura, M. Senoh, and T. Mukai, "Highly p-typed mg-doped GaN films grown with GaN buffer layers," Japanese Journal of Applied Physics Part 2-Letters, Vol. 30, pp. L1708-L1711, 1991.
[12] X. H. Wu, P. Fini, E. J. Tarsa, B. Heying, S. Keller, U. K. Mishra, et al., "Dislocation generation in GaN heteroepitaxy," Journal of Crystal Growth, Vol. 189, pp. 231-243, 1998.
[13] R. P. Parikh and R. A. Adomaitis, "An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system," Journal of Crystal Growth, Vol. 286, pp. 259-278, 2006.
[14] E. J. Tarsa, B. Heying, X. H. Wu, P. Fini, S. P. DenBaars, and J. S. Speck, "Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy," Journal of Applied Physics, Vol. 82, pp. 5472-5479, 1997.
[15] K. Hara, E. Okuyama, A. Yonemura, T. Uchida, and N. Okamoto, "Synthesis and impurity doping of GaN powders by the two-stage vapor-phase method
75
for phosphor applications," Physica Status Solidi a-Applications and Materials Science, Vol. 203, pp. 2694-2700, 2006.
[16] A. M. S. ElAhl, M. He, P. Zhou, G. L. Harris, L. Salamanca-Riba, F. Felt, et al., "Systematic study of effects of growth conditions on the (nano-, meso-, micro)size and (one-, two-, three-dimensional) shape of GaN single crystals grown by a direct reaction of Ga with ammonia," Journal of Applied Physics, Vol. 94, p. 7749, 2003.
[17] V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, et al., "Phonon dispersion and Raman scattering in hexagonal GaN and AlN." Physical Review B, Vol. 58, pp. 12899-12907, 1998.
[18] W. H. Bragg and W. L. Bragg, "The structure of the diamond," Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, Vol. 89, pp. 277-291, 1913.
[19] K. J. Sankaran, N. H. Tai, and I. N. Lin, "Microstructural evolution of diamond films from CH4/H-2/N-2 plasma and their enhanced electrical properties," Journal of Applied Physics, Vol. 117, p. 10, 2015.
[20] P. W. May, "CVD diamond: a new technology for the future?" Endeavour, Vol. 19, pp. 101-106, 1995.
[21] N. Kumar, R. Ramadoss, A. T. Kozakov, K. J. Sankaran, S. Dash, A. K. Tyagi, et al., "Humidity-dependent friction mechanism in an ultrananocrystalline diamond film," Journal of Physics D-Applied Physics, Vol. 46, p. 8, 2013.
[22] L. Wang, X. L. Lei, B. Shen, F. H. Sun, and Z. M. Zhang, "Tribological properties and cutting performance of boron and silicon doped diamond films on Co-cemented tungsten carbide inserts," Diamond and Related Materials,
76
Vol. 33, pp. 54-62, 2013.
[23] J. C. Zhang, J. W. Zimmer, R. T. Howe, and R. Maboudian, "Characterization of boron-doped micro- and nanocrystalline diamond films deposited by wafer-scale hot filament chemical vapor deposition for MEMS applications," Diamond and Related Materials, Vol. 17, pp. 23-28, 2008.
[24] K. J. Sankaran, N. Kumar, S. Dash, H. C. Chen, A. K. Tyagi, N. H. Tai, et al., "Significance of grain and grain boundary characteristics of ultrananocrystalline diamond films and tribological properties," Surface & Coatings Technology, Vol. 232, pp. 75-87, 2013.
[25] K. J. Sankaran, K. Srinivasu, K. C. Leou, N. H. Tai, and I. N. Lin, "High stability electron field emitters made of nanocrystalline diamond coated carbon nanotubes," Applied Physics Letters, Vol. 103, pp. 1-5, 2013.
[26] T. H. Chang, S. Kunuku, J. Kurian, A. Manekkathodi, L. J. Chen, K. C. Leou, et al., "Role of carbon nanotube inter layer in enhancing the electron field emission behavior of ultrananocrystalline diamond coated Si-tip arrays," ACS Applied Materials & Interfaces, Vol. 7, pp. 7732-7740, 2015.
[27] F. J. Himpsel, J. A. Knapp, J. A.VanVechten, and D. E. Eastman,"Quantum photoyield of diamond(111) –A stable negative-affinity emitter," Physical Review B, Vol. 20, pp. 624-626, 1979.
[28] A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, et al., "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices," Diamond and Related Materials, Vol. 10, pp. 1952-1961, 2001.
[29] C.-S. Wang, H.-C. Chen, W.-C. Shih, H.-F. Cheng, and I. N. Lin, "Effect of H2/Ar plasma on growth behavior of ultra-nanocrystalline diamond films:
77
The TEM study," Diamond and Related Materials, Vol. 19, pp. 138-142, 2010.
[30] M. A. Brewer, I. G. Brown, P. J. Evans, and A. Hoffman, "Diamond film growth on Ti-implanted glassy carbon," Applied Physics Letters, Vol. 63, pp. 1631-1633, 1993.
[31] A. Saravanan, B. R. Huang, K. J. Sankaran, S. Kunuku, C. L. Dong, K. C. Leou, et al., "Bias-enhanced nucleation and growth processes for ultrananocrystalline diamond films in Ar/CH4 plasma and their enhanced plasma illumination properties," ACS Applied Materials & Interfaces, Vol. 6, pp. 10566-10575, 2014.
[32] P. T. Joseph, N. H. Tai, Y. C. Chen, H. F. Cheng, and I. N. Lin, "Transparent ultrananocrystalline diamond films on quartz substrate," Diamond and Related Materials, Vol. 17, pp. 476-480, 2008.
[33] D. G. Lee and R. K. Singh, "Synthesis of (111) oriented diamond thin films by electrophoretic deposition process," Applied Physics Letters, Vol. 70, pp. 1542-1544, 1997.
[34] J. G. Buijnsters, L. Vázquez, and J. J. ter Meulen, "Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth," Diamond and Related Materials, Vol. 18, pp. 1239-1246, 2009.
[35] C. J. Rennick, A. G. Smith, J. A. Smith, J. B. Wills, A. J. Orr-Ewing, M. N. R. Ashfold, et al., "Improved characterisation of C2 and CH radical number density distributions in a DC arc jet used for diamond chemical vapour deposition," Diamond and Related Materials, Vol. 13, pp. 561-568, 2004.
[36] G. Lombardi, K. Hassouni, F. Benedic, F. Mohasseb, J. Ropcke, and A.
78
Gicquel, "Spectroscopic diagnostics and modeling of Ar/H-2/CH4 microwave discharges used for nanocrystalline diamond deposition," Journal of Applied Physics, Vol. 96, pp. 6739-6751, 2004.
[37] W. Tang, C. Zhu, W. Yao, Q. Wang, C. Li, and F. Lu, "Nanocrystalline diamond films produced by direct current arc plasma jet process," Thin Solid Films, Vol. 429, pp. 63-70, 2003.
[38] I. N. Lin, H. C. Chen, C. S. W, Y. R. Lee, and C. Y. Lee, "Nanocrystalline diamond microstructures from Ar/H2/CH4- plasma chemical vapour deposition," CrystEngComm, Vol. 13, pp. 6082-6089, 2011.
[39] S. Kunuku, K. J. Sankaran, C. Y. Tsai, W. H. Chang, N. H. Tai, K. C. Leou, et al., "Investigations on diamond nanostructuring of different morphologies by the reactive-ion etching process and their potential applications," ACS Applied Materials & Interfaces, Vol. 5, pp. 7439-7449, 2013.
[40] K. J. Sankaran, K. Srinivasu, H. C. Chen, C. L. Dong, K. C. Leou, C. Y. Lee, et al., "Improvement in plasma illumination properties of ultrananocrystalline diamond films by grain boundary engineering," Journal of Applied Physics, Vol. 114, p. 054304, 2013.
[41] X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, "Low temperature growth of ultrananocrystalline diamond," Journal of Applied Physics, Vol. 96, pp. 2232-2239, 2004.
[42] D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss, "Control of diamond film microstructure by Ar additions to CH4/H-2 microwave plasmas," Journal of Applied Physics, Vol. 84, pp. 1981-1989, 1998.
79
[43] A. C. Ferrari and J. Robertson, "Origin of the 1150-cm(-1) Raman mode in nanocrystalline diamond," Physical Review B, Vol. 63, p. 4, 2001.
[44] J. H. Lee, J. T. Oh, Y. C. Kim, and J. H. Lee, "Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire," IEEE Photonics Technology Letters, Vol. 20, pp. 1563-1565, 2008.
[45] K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, et al., "Growth-mechanism of GaN grown on sapphire with AlN buffer layer by MOVPE," Journal of Crystal Growth, Vol. 115, pp. 628-633, 1991.
[46] M. Q. He, I. Minus, P. Z. Zhou, S. N. Mohammed, J. B. Halpern, R. Jacobs, et al., "Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH3," Applied Physics Letters, Vol. 77, pp. 3731-3733, 2000.
[47] J. Y. Li, Z. Y. Qiao, X. L. Chen, Y. G. Cao, and M. He, "Gallium nitride nano-ribbon rings," Journal of Physics-Condensed Matter, Vol. 13, pp. 285-289, 2001.
[48] H. Shin, E. Arkun, D. B. Thomson, P. Miraglia, E. Preble, R. Schlesser, et al., "Growth and decomposition of bulk GaN: role of the ammonia/nitrogen ratio," Journal of Crystal Growth, Vol. 236, pp. 529-537, 2002.
[49] H. Y. Gao, F. W. Yan, H. X. Zhang, J. M. Li, J. X. Wang, and J. C. Yan, "First and second order Raman scattering spectroscopy of nonpolar a-plane GaN," Journal of Applied Physics, Vol. 101, p. 5, 2007.
[50] P. W. May, H. Y. Tsai, W. N. Wang, and J. A. Smith, "Deposition of CVD diamond onto GaN," Diamond and Related Materials, Vol. 15, pp. 526-530, 2006.
80
[51] A. C. Ferrari and J. Robertson, "Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon," Physical Review B, Vol. 64, p. 13, 2001.
[52] M. Seelmann-Eggebert, P. Meisen, F. Schaudel, P. Koidl, A. Vescan, and H. Leier, "Heat-spreading diamond films for GaN-based high-power transistor devices," Diamond and Related Materials, Vol. 10, pp. 744-749, 2001.
[53] S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, "Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without added H-2," Journal of Applied Physics, Vol. 90, pp. 118-122, 2001.
[54] S. B. Xue, X. Zhang, R. Huang, H. Z. Zhuang, and C. S. Xue, "Defect-pit-assisted growth of GaN nanostructures: nanowires, nanorods and nanobelts," Dalton Transactions, pp. 4296-4302, 2008
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *