帳號:guest(3.22.240.98)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈孜璨
作者(外文):Shen, Tzu Tsan
論文名稱(中文):循環拉伸應力與電流輔助熱退火對可撓式基板上碲化鉍系薄膜微結構與熱電性質影響之研究
論文名稱(外文):Effect of cyclic stress and current-assisted annealing on microstructure and thermoelectric properties of Bi-Sb-Te films on flexible substrates
指導教授(中文):廖建能
指導教授(外文):Liao, Chien Neng
口試委員(中文):蔡哲正
李暐
廖建能
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031536
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:61
中文關鍵詞:碲化鉍拉伸應力裂紋
外文關鍵詞:Bi2Te3tensile stresscrack
相關次數:
  • 推薦推薦:0
  • 點閱點閱:349
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
碲化鉍系統為室溫範圍下具優異表現之熱電材料,若將此材料系統以薄膜形式與軟性基板結合,將可得質輕、低熱導、高Seebeck係數之可撓式熱電薄膜元件,在自體發電—穿戴式電子元件這方面之應用具有極大潛力。然而在元件製作與操作過程中,導入熱電薄膜之應力將影響元件之效能及可靠性,因此探討應力對可撓式基板上碲化鉍系薄膜微結構與熱電性質之影響遂顯相形重要。本研究計畫將p型碲化鉍薄膜濺鍍於軟性聚亞醯胺基板上,分別經高溫熱退火或電流輔助熱退火後,再將薄膜施以循環拉伸應力,並觀察上述兩種熱處理下薄膜電阻值隨拉伸數量之改變,進而探討拉伸應力對薄膜之熱電性質與微結構影響。研究結果顯示碲化鉍熱電薄膜其載子濃度與Seebeck係數並不受室溫下所施加之機械應力影響,但在經相同拉伸次數作用後,碲化鉍熱電薄膜隨不同熱處理竟產生相異電阻上升程度—當拉伸次數達三十五次時,高溫熱退火薄膜電阻上升了30 %,電流輔助熱退火薄膜僅上升了7 %。為探討此現象成因,本研究相繼觀察不同熱處理下熱電薄膜微結構隨拉伸次數之變化,發現熱電薄膜受拉伸作用後皆會產生與拉伸方向垂直之裂紋,且應力移除後之裂紋密合程度會導致熱電薄膜隨循環拉伸應力產生不同之電阻上升幅度:因碲化鉍熱電薄膜經電流輔助熱退火後,內部晶粒受電流燒結影響使晶粒間鍵結較強,因此受相同循環拉伸次數作用後產生晶粒脫落之程度較少,導致裂紋在應力移除後之密合程度較佳,因此能觀察到電流輔助熱退火薄膜上留下較窄與較淺之裂紋形貌,並達到有效減緩熱電薄膜受循環應力影響時產生之電阻成長幅度。此外,量測結果中亦顯示經相同拉伸次數作用後,電流輔助熱退火薄膜所產生之載子遷移率下降程度小於高溫熱退火薄膜,因此可進一步證明碲化鉍熱電薄膜經電流輔助熱退火後能有效抑制其受應力影響所造成之電阻上升情況。
Bismuth telluride has been considered as a promising candidate for thermoelectric devices due to its superior thermoelectric properties at room temperature. By developing thermoelectric devices using thin films and flexible substrates, we can fabricate light, wearable and high performance thermoelectric devices which may contribute to the development of self-powered wearable mobile electronics. However, during fabrication and operation of such devices, a different degree of stress will be inevitably introduced, therefore, the understanding of mechanical and electrical properties of thermoelectric thin films on flexible substrates is crucial for device performance and reliability considerations. In this study, p type Bi-Sb-Te thin films were deposited on polyimide substrates by RF magnetron sputtering. After deposition, thin films were subject to conventional thermal annealing or current-assisted annealing and the electrical resistivity of Bi-Sb-Te thin films was in-situ measured during cyclic tensile stressing. The results show that the mechanical stress induced at room temperature has no significant effect on Seebeck coefficient and carrier concentration of Bi-Sb-Te thin films, however, current-assisted annealing is beneficial for suppressing the stress-induced increase in electrical resistivity of Bi-Sb-Te films compared with conventional thermal annealing. To investigate this phenomenon, this study aimed at the observation of microstructure of Bi-Sb-Te thin films and found the stress-induced resistivity change at room temperature is associated with the degree of microcrack-close-up. Both crack width and crack depth of Bi-Sb-Te films with current-assisted annealing is smaller than those with conventional thermal annealing after stress is released. The current-assisted annealing is able to mitigate the degradation of carrier mobility induced by cyclic stressing for the Bi-Sb-Te films.
摘要 I
Abstract II
誌謝 III
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 熱電轉換原理 4
2.1.1 Seebeck效應 4
2.1.2 Peltier效應 5
2.1.3 Thomson效應 6
2.2 熱電優值與元件轉換效率 7
2.3 碲化鉍(Bi2Te3)系熱電材料 9
2.4 可撓式熱電薄膜元件發展 11
2.5 應力對各式薄膜之相關影響 15
第三章 實驗流程 18
3.1 實驗流程 18
3.1.1 軟性基板前處理 19
3.1.2 熱電薄膜濺鍍沉積 20
3.1.3 熱電薄膜熱處理 21
3.1.4 拉伸測試與電性量測 23
3.2 實驗結果量測分析 27
3.2.1 薄膜應力量測分析 27
3.2.2 熱電係數(Seebeck coefficient)量測分析 28
3.2.3 霍爾效應(Hall effect)量測分析 29
3.2.4 表面形貌量測分析 31
3.2.4.1 掃描式電子顯微鏡(Scanning Electron Microscope) 31
3.2.4.2 原子力顯微鏡(Atomic Force Microscope) 32
第四章 結果與討論 34
4.1 熱電薄膜應力應變量測 34
4.2 熱電薄膜電性性質隨循環拉伸應力變化 36
4.3 熱電薄膜微結構觀察 37
4.3.1 不同熱處理對熱電薄膜微結構影響 37
4.3.2 拉伸應力對熱電薄膜微結構影響 40
4.4 熱電薄膜熱電性質隨循環拉伸應力變化 50
第五章 結論 57
參考文獻 58
[1] Tritt, T. M., & Subramanian, M. A. (2006). Thermoelectric materials, phenomena, and applications: a bird's eye view. MRS bulletin, 31(03), 188-198.
[2] Seebeck, T. J. (1822). Magnetic polarization of metals and minerals. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265, 1823.
[3] Ioffe, A. F. (1957). Semiconductor thermoelements and thermoelectric cooling.
[4] Thomson, W. (1857). 4. On a Mechanical Theory of Thermo-Electric Currents. Proceedings of the Royal Society of Edinburgh, 3, 91-98.
[5] Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature materials, 7(2), 105-114.
[6] Wang, G., & Cagin, T. (2007). Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations. Physical Review B, 76(7), 075201.
[7] Caillat, T., Carle, M., Pierrat, P., Scherrer, H., & Scherrer, S. (1992). Thermoelectric properties of (BixSb1− x)2Te3 single crystal solid solutions grown by the THM method. Journal of Physics and Chemistry of Solids, 53(8), 1121-1129.
[8] Miller, G. R., & Li, C. Y. (1965). Evidence for the existence of antistructure defects in bismuth telluride by density measurements. Journal of Physics and Chemistry of Solids, 26(1), 173-177.
[9] Starý, Z., Horak, J., Stordeur, M., & Stölzer, M. (1988). Antisite defects in Sb2− xBixTe3 mixed crystals. Journal of Physics and Chemistry of Solids,49(1), 29-34.
[10] Wang, G., & Cagin, T. (2007). Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations. Physical Review B, 76(7), 075201.
[11] Venkatasubramanian, R., Siivola, E., Colpitts, T., & O'quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature,413(6856), 597-602.
[12] Hicks, L. D., & Dresselhaus, M. S. (1993). Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 47(19), 12727.
[13] Glatz, W., Schwyter, E., Durrer, L., & Hierold, C. (2009). Bi2Te3-Based Flexible Micro Thermoelectric Generator With Optimized Design. Microelectromechanical Systems, Journal of, 18(3), 763-772.
[14] Francioso, L., De Pascali, C., Farella, I., Martucci, C., Cretì, P., Siciliano, P., & Perrone, A. (2011). Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. Journal of Power Sources, 196(6), 3239-3243.
[15] Jo, S. E., Kim, M. K., Kim, M. S., & Kim, Y. J. (2012). Flexible thermoelectric generator for human body heat energy harvesting. Electronics letters, 48(16), 1015-1017.
[16] We, J. H., Kim, S. J., & Cho, B. J. (2014). Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator. Energy, 73, 506-512.
[17] Macionczyk, F., & Brückner, W. (1999). Tensile testing of AlCu thin films on polyimide foils. Journal of Applied Physics, 86(9), 4922-4929.
[18] Li, T., Huang, Z. Y., Xi, Z. C., Lacour, S. P., Wagner, S., & Suo, Z. (2005). Delocalizing strain in a thin metal film on a polymer substrate. Mechanics of Materials, 37(2), 261-273.
[19] Lu, N., Wang, X., Suo, Z., & Vlassak, J. (2007). Metal films on polymer substrates stretched beyond 50%. Applied Physics Letters, 91(22), 221909.
[20] Li, T., & Suo, Z. (2007). Ductility of thin metal films on polymer substrates modulated by interfacial adhesion. International Journal of Solids and Structures, 44(6), 1696-1705.
[21] Kim, B. J., Shin, H. A., Lee, J. H., Yang, T. Y., Haas, T., Gruber, P., ... & Joo, Y. C. (2014). Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates. Journal of Materials Research,29(23), 2827-2834.
[22] Chen, P. J., & Liao, C. N. (2014). Thermoelectric transport properties of Bi–Te based thin films on strained polyimide substrates. Applied Physics Letters,105(13), 133903.
[23] Glushko, O., Marx, V. M., Kirchlechner, C., Zizak, I., & Cordill, M. J. (2014). Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain. Thin Solid Films, 552, 141-145.
[24] Lu, N., Suo, Z., & Vlassak, J. J. (2010). The effect of film thickness on the failure strain of polymer-supported metal films. Acta Materialia, 58(5), 1679-1687.
[25] Cairns, D. R., Witte II, R. P., Sparacin, D. K., Sachsman, S. M., Paine, D. C., Crawford, G. P., & Newton, R. R. (2000). Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Applied Physics Letters,76(11), 1425-1427.
[26] http://worldwide.bose.com/electroforce/en/web/extended_stroke_instruments/page.html
[27] http://www.keithley.com.tw/products/dcac/currentvoltage/2400smu/?mn=2400
[28] http://www.keithley.com.tw/events/proddemos/2400demo/2400_DC5_TW.html
[29] Koc, H., Mamedov, A. M., & Ozbay, E. (2013, July). Structural, elastic, and electronic properties of topological insulators: Sb2Te3 and Bi2Te3. In Applications of Ferroelectric and Workshop on the Piezoresponse Force Microscopy (ISAF/PFM), 2013 IEEE International Symposium on the (pp. 41-44). IEEE.
[30] http://four-point-probes.com/ecopia-hms-3000-hall-measurement-system/
[31] Ben-Yehuda, O., Shuker, R., Gelbstein, Y., Dashevsky, Z., & Dariel, M. P. (2007). Highly textured Bi2Te3-based materials for thermoelectric energy conversion. Journal of applied physics, 101(11), 3707.
[32] Peng, C., Jia, Z., Bianculli, D., Li, T., & Lou, J. (2011). In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates. Journal of Applied Physics,109(10), 103530.
[33] Liu, D. W., Li, J. F., Chen, C., Zhang, B. P., & Li, L. (2010). Fabrication and evaluation of microscale thermoelectric modules of Bi2Te3-based alloys. Journal of Micromechanics and Microengineering, 20(12), 125031.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *