帳號:guest(3.142.166.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊雅薇
作者(外文):Yang,Ya Wei
論文名稱(中文):共軛高分子薄膜之分子應力與分子堆積研究
論文名稱(外文):Residual stresses and molecular packing of conjugated polymer thin films
指導教授(中文):楊長謀
指導教授(外文):Yang, Arnold Chang-Mou
口試委員(中文):戴子安
韋光華
吳逸謨
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031535
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:117
中文關鍵詞:共軛高分子分子堆積除潤運動光致發光
外文關鍵詞:Conjugated polymerMolecular packingDewettingPhotoluminescence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:97
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要經由對奈米薄膜不穩除潤過程的精細觀察,量測共軛高分子薄膜內部的分子鏈反彈應力(molecular recoiling stress),並據以探究高分子從溶液旋塗成固態薄膜的演變與分子堆積情形。本研究
所使用的共軛高分子為(poly[2-methoxy-5-((2’-ethylhexyl)oxy)-1,4-phenylenevinylene]) MEH-PPV,並輔以非共軛結構之高分子聚苯乙烯(polystyrene,PS)。我們經由量測奈米薄膜除潤時,在初期孔洞邊緣的應力釋放,以及在複層結構時對彈性基材的彈性形變,發現共軛高分子薄膜有較小的分子應力,此可能與硬桿型分子結構所具有較長的分子堅持長度(Persistence length)和較小的分子亂度有關。此外,在旋塗形成薄膜時,共軛高分子由於硬桿結構,較不易形成阻礙溶劑逸散的表皮層(skin layer),因此,其分子應力對薄膜厚度,呈現單一的指數下降現象,而非一般非共軛高分子的雙指數下降行為。同時,共軛高分子奈米薄膜在旋塗基材寬約2nm的介面層,也有遠較非共軛高分子為小的堆積密度(約為十分之一),此應與旋塗成形時,溶劑揮發造成的分子反彈力較小有關。最後,由於高分子強大的聲子-電子交互作用(electron-phonon coupling),共軛高分子的光電發光效率其實與分子鏈段應力(Segmental stress)密切相關,此薄膜成形時所產生的殘留應力,與高分子光電元件的性能密切相關。
The thesis aims to measure the molecular stresses operative in conjugated polymer molecules and explore their packing in the ultrathin films prepared by spin coating. The conjugated polymer MEH-PPV (poly[2-methoxy-5-((2’-ethylhexyl)oxy)-1,4-phenylenevinylene]) was used as the model polymer in comparison to the non-conjugated polymer polystyrene (PS). The molecular stresses were determined from the thin film instability of dewetting, by measuring the stress release at the edge of an incipient hole or the depression in the soft elastic substrate underneath a dewetting hole. The molecular stresses of the conjugated polymer confined in thin films were found substantially smaller than those of PS. The observation is attributed to the rigid-rod molecular structure that exhibits a longer persistence length and hence a smaller entropy variation for the transition of the molecules from solute to solid film. In addition, the local mass density in the thin (~2nm) interfacial layer next to the substrate was found to be only one tenth of that of PS, believably resulted from the smaller molecular recoiling forces during solvent evaporation. Moreover, in contrast to the double-exponential behavior of flexible-chain polymers such as PS, the molecular stress demonstrated a single exponential decay with film thickness, indicating the absence of skin layer during the rapid solidification of spin coating, which is also attributed to the rigid-rod structure that allows easier passing of the solvent molecules. Since the optoelectronic quantum efficiencies are highly dependent on the segmental stress due to the robust electron-phonon interactions of the linear chains, good control over the residual stress of thin conjugated polymer films plays a fundamental role for the development of polymer-based devices.
第一章 簡介 16
第二章 文獻回顧 18
2-1 高分子之相關物理性質介紹 18
2-1.1 高分子鏈的分子組態 18
2-1.2 高分子溶液的交纏濃度(C*) 19
2-2 旋轉塗佈過程中分子鏈受形變過程 21
2-3 高分子薄膜除潤現象 23
2-3.1除潤現象的發生機制 24
2-3.2 Nucleation dewetting 26
2-3.3 Spinodal dewetting 27
2-4 高分子超薄膜的殘留應力 28
2-5 MEH-PPV共軛高分子 32
2-5.1 MEH-PPV分子組態及其特性 33
2-5.2 MEH-PPV共軛高分子的光電效率 35
2-5.3 MEH-PPV共軛高分子的熱退火 37
2-5.4 MEH-PPV共軛高分子的除潤現象 39
第三章 實驗方法 41
3-1 實驗材料 41
3-1.1 高分子材料 41
3-1.2 基材 42
3-2 實驗流程 44
3-2.1 薄膜製備 44
3-2.2 基材製備 45
3-2.3 熱除潤退火實驗 46
3-3 實驗儀器 47
3-3.1 光學顯微鏡 (Optical microscopy) 47
3-3.2 原子力顯微鏡 (Atomic force microscopy) 48
3-3.3 螢光光譜儀 (Photoluminescence spectrometer) 50
3-3.4 低掠角X-ray反射率(X-Ray reflectivity) 51
第四章 結果與討論 57
4-1 矽晶片上的分子鏈反應力量測方式 57
4-2 矽膠(Silicon rubber)上雙層膜除潤 63
4-2.1 柔軟高分子PS薄膜熱退火除潤實驗 63
4-2.2 共軛高分子MEH-PPV薄膜 69
4-3 Spinodal Dewetting 74
4-3.1 分子鏈反彈應力計算方式 74
4-3.2 分子量效應 79
4-4 MEH-PPV與PS之分子鏈反彈應力 82
4-4.1 高分子鏈受形變的過程對分子鏈反彈應力的影響 83
4-4.2 高分子鏈結構對分子鏈反彈應力的影響 90
4-4.3 分子鏈反彈應力對Persistence length的關係 96
4-5 共軛高分子MEH-PPV光致發光 98
4-5.1 稀釋效應 98
4-5.2 基材效應 99
4-5.3 分子鏈反彈應力對共軛高分子光致發光的影響 102
第五章 結論 107
參考文獻 109
附錄 114
[1] K.-P. Tung, C.-C. Chen, P.-W. Lee, Y.-W. Liu, T.-M. Hong, K.-C.
Hwang, K.C. Hsu , J.H. White, D. Jonathan, A. C.− M. Yang, ACS
nano, 2011. 5(9): p. 7296-7302.
[2] G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele,T. Vilmin, A.E. Raphaël, Nature Materials 2005, 4, 754-758.
[3] M. H. Yang, S. Y. Hou, Y. L Chang, A. C.-M.Yang, Physical Review Letters, 2006, 96, 066105.
[4] G. Reiter, Physical Review Letters, 1992, 68, 75-78.
[5] G. Reiter, Langmuir, 1993. 9, 1344-1351.
[6]Vrij, A., & Overbeek, J. T. G., Journal of the American Chemical Society, 90(12), 3074-3078. (1968).
[7] J. W. Cahn, J. Chem. Phy., 1965, 42, 93.
[8] M. Sferrazza, C. Xiao, R.A.L. Jones, D.G. Bucknall, J. Webster, J. Penfold, Phys. Rev. Lett. 1997, 78, 3693.
[9] T. Vilmin and E. Raphael, Europhy. Lett. 2005, 72, 781.
[10] S. A. Akhrass, G. Reiter, S. Y. Hou, M. H. Yang, Y. L. Chang, F. C. , C. F. Wang, A. C.-M. Yang, Phys. Rev. Lett. 2008, 100, 178301.
[11] G. Reiter, P.G. de Gennes, The European Physical Journal E, 2001, 6, 25-28.
[12] G. Reiter, Macromolecules ,1994, 27, 3046-3052.
[13] M.H. Yang, S. Y. Hou, Y. L. Chang, A.C.-M. Yang, Phys. Rev. Lett., 2006,96, 066105.
[14] R. Seemann, S. Herminghaus and K. Jacobs, Phys. Rev. Lett., 2001, 86, 5534–5537.
[15] A. Sharma, Langmuir, 1993, 9, 861.
[16] A. Sharma, Langmuir, 9, 3580 (1993).
[17] R. Seemann, , S. Herminghaus, and K. Jacobs, Phys. Rev. Lett., 2001. 86: p. 5534.
[18] L. Rayleigh, Proc. London Math. Soc., 1978, 10, 4.
[19] K. Jacobs, S. Herminghaus, and K.R. Mecke, Langmuir, 1998, 14, 965.
[20] G. Reiter, Phy. Rev. Lett., 1922, 68, 75.
[21] R. Xie, A. Karim, J.F. Douglas, C.C. Han, R.A. Weiss, Phys. Rev. Lett., 1998, 81, 1251-1254
[22] T. G. Stange and D. F. Evans, Langmuir, 1997, 13, 4459.
[23] G. Reiter, Advances in Polymer Science 2013, 252, 29-64.
[24] K.Y. Suh and H.H. Lee, Phys. Rev. Lett., 2001, 87, 135502.
[25] A. Sharma and J. Mittal, Phys. Rev. Lett., 2002, 89, 186101.
[26] M. Sferrazza et al., Phys. Rev. Lett., 1998, 81, 5173.
[27] T.G. Stange, D.F. Evans, W.A. Hendrickson, Langmuir, 1997, 13, 4459-4465.
[28] 簡毅, 清華大學材料系碩士論文 2011,高分子超薄膜分子拘束造成機械不穩態、發光行為變異、和楊氏係數下降之研究
[29] P. F. Barbara, A. J. Gesquire, S.-J. Park, Y. J. Lee, Acc. Chem. Res., 2005, 38, 602.
[30] J. Yu, D. Hu, P. F. Barbara, Science, 2000, 289, 1327.
[31] J. C. Bolinger, M. C. Traub, T. Adachi, P. F. Barbara, Science, 2011, 331, 4
[32] J. Shinar and J. Partee, Syn. Met.,1997, 84, 525-528.
[33] L. J. Rothberg, M. Yan, S. Son, M. E. Galvin, E.W. Kwock, T. M.
Miller, H. E. Katz, R. C. Haddon, F. Papadimitrakopoulos, Syn.
Met., 1996, 78, 213-216.
[34] T. W. Lee and O. O. Park, Adv. Mater., 2000, 12, 11.
[35] T. Q. Nguyen, I. B. Martini, J. Liu, and B. J. Schwartz, J. Phys.
Chem. B, 2000, 104, 237-255.
[36] H. J. Chen, L. Y. Wang, W. Y. Chiu, Eur. Poly. J.,2007, 43, 4750–4761.
[37] J. Liu, T. F. Guo, and Y. Yang, Appl. Phys. Lett.,2002, 91, 3.
[38]楊志偉,清華大學材料系碩士論文 2006, 利用除潤與薄膜拉伸測試研究分子鏈運動對共軛高分子發光之影響
[39]張昱崙, 清華材料系碩士論文2006, 拘束於旋塗奈米超薄脅內的高分子團之分子力、堆積、和形變量測與分析研究
[40]陳炳志,清華大學材料系碩士論文 2010, 表面除潤摩擦形變引起之共軛高分子巨大之光電增益
[41]李培煒, 清華大學材料系碩士論文 2011, 共軛高分子薄膜之分子堆積、除潤運動與拉伸的發光增益研究.
[42] X. Yang and J. Loos, Macromolecules 40, 1353 (2007).
[43] D. E. Markov, E. Amsterdam, P. W. M. Blom, A. B. Sieval, and J. C.
Hummelen, J. Phys. Chem. A, 109, 5266 (2005).
[44] J. J. M. Halls, K. Pichler, R. H. Friend, S.C. Moratti, and A. B.
Holmes, Appl. Phys. Lett. 68, 3120 (1996).
[45] D. E. Markov, C. Tanase, P. W. M. Blom, and J. Wildeman, Phys.
Rev. B, 72, 045217 (2005)
[46] T. Q. Nguyen, V.Doan, B. J. Schwartz, Journal of Chemical Physics 1999, 110, 4068.
[47] E. Collini, G. D. Scholes , Science 2009, 323, 369-373.
[48] T. Q. Nguyen, J. Wu, V. Doan, B. J. Schwartz, S. H.Tolbert, Science 2000, 288, 652-656.
[49] J. Vogelsang, T.Adachi, J .Brazard, D. A. Vanden Bout, P. F. Barbara, Nature Materials 2011, 10, 942-946.
[50] J. Vogelsang, J. Brazard, T. Adachi, J. C.Bolinger, , P. F. Barbara, , Angewandte Chemie International Editon 2011, 50, 2257-2261.
[51] J. L. Brédas, R. Silbey, Science 2009, 323, 348-349.
[52] B. J. Schwartz, Annual Review of Physical Chemistry 2003, 54, 141-172.
[53] B. J. Schwartz, Nature Materials 2008, 7, 427-428.
[54] M. Rubinstein and R.H. Colby, Polymer physics. 2003: Oxford
University Press, New York.
[55] A. R. Khokhlov , A.Y. Grosberg, V. S. Pande, Statistical Physics of Macromolecules (Polymers and Complex Materials): American Institute of Physicsm (1994)
[56] A. Brûlet, F. Boué, and J. P. Cotton. ,Journal de Physique II 6.6 (1996): 885-891.
[57] Su, C. H., et al. Macromolecules 42.17 (2009): 6656-6664.
[58] C. L. Gettinger, A. J. Heeger, J. M. Drake & D. J. Pine, Molecular Crystals and Liquid Crystals 1994, 256(1), 507-512.
[59] V.-D Tuan, Nanotechnology in Biology and Medicine. Methods, Devices, and Applications, Boca Raton : CRC Press (2007), pp.257
[60] Inigo, A. R., et al., Journal of the Chinese Chemical Society 57.3B
(2010): 459-468.
[61] de Gennes, P.-G., The journal of chemical physics 55.2 (1971): 572.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *