帳號:guest(3.131.13.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周威宇
作者(外文):Chou, Wei Yu
論文名稱(中文):高功率鋰離子電池LiNi0.5Mn1.5O4正極材料與黏結劑結合之電化學性質改良
論文名稱(外文):Electrochemical Characteristics of LiNi0.5Mn1.5O4 Cathode Material Incorporated with Different Binders for High Power Lithium-ion Battery
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq Gong
口試委員(中文):李志偉
呂承璋
口試委員(外文):Lee, Jyh Wei
Lu, Cheng Zhang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031534
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:102
中文關鍵詞:正極材料黏結劑鋰離子二次電池
外文關鍵詞:Cathode materialsBinderLithium-ion battery
相關次數:
  • 推薦推薦:0
  • 點閱點閱:242
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,由於鋰離子電池具有高電容量、高工作電壓、長圈數充放電性能的特性,對於其的需求與日俱增。除了在攜帶式電子裝置的需求之外,未來在電動車市場的需求以及和智慧電網相互搭配所需的儲能裝置上,皆須大量運用到鋰離子電池。鋰鎳錳氧材料因具有高穩定性、高功率密度的優勢,極具有取代傳統所使用的正極材料鋰鈷氧之潛力,成為下個世代的正極材料。
本研究致力於水系黏結劑極片製程之開發,採用如羧甲基纖維素鈉(CMC)和海藻酸鈉(SA)等黏結劑,與傳統常用之有機系製程採用聚偏氟乙烯(PVDF)和有機溶劑N-甲基吡咯烷酮(NMP)進行比較。水系黏結劑製程之開發由於以水取代有機溶劑NMP,具有降低成本和對環境友善之優勢,符合鋰離子電池工業之需求。在本研究中,藉由水系黏結劑取代有機系黏結劑(PVDF),與鋰鎳錳氧正極材料結合,進行極片製備。對於正極材料電化學性質有正面改進之效果,特別是在快速充放電性能及高溫長圈數性能上,有顯著之提升。經由一系列的極片測試與電化學分析,觀察到水系黏結劑相對於傳統上有機系黏結劑(PVDF)具有分散性較佳之優勢,期能建立一套有助於鋰離子傳輸及抑制過渡金屬溶出現象的運作框架。
List of Tables III
Figure Captions IV
Abstract IX
Chapter 1 Introduction 1
1.1 Background 1
1.2 Introduction to lithium-ion battery 3
1.3 Motivations and objectives in this study 6
Chapter 2 Literature Review 13
2.1 The evolution of cathode materials 13
2.2 Spinel LiNi0.5Mn1.5O4 cathode materials 19
2.3 Binder materials for lithium-ion battery 23
2.3.1 Basic concepts of binder materials 23
2.3.2 Anode materials 25
2.3.3 Cathode materials 28
Chapter 3 Experimental Details 41
3.1 Material preparation 41
3.1.1 Synthesis procedure of spinel LiNi0.5Mn1.5O4 powder 41
3.1.2 Binder source 41
3.2 Characterization and analysis 42
3.2.1 Phase identification 42
3.2.2 Morphological observation 42
3.2.3 Structural investigation 42
3.2.4 Storage test 43
3.2.5 Bond structure investigation 43
3.3 Electrochemical measurements 44
3.3.1 Electrode fabrication and battery assembly 44
3.3.2 Cyclability and rate capability measurement 45
3.3.3 Cyclic voltammetry (CV) 45
3.3.4 Electrochemical impedance spectroscopy (EIS) 45
Chapter 4 Results and Discussion 48
4.1 Effect of different binders on LiNi0.5Mn1.5O4 with enhanced rate capability 48
4.1.1 Synthesis of LiNi0.5Mn1.5O4 cathode material by co-precipitation method 49
4.1.2 Electrochemical analysis of LiNi0.5Mn1.5O4 electrode with different binders 50
4.2 Effect of different binders on LiNi0.5Mn1.5O4 with improved cycling performance at elevated temperature 68
4.2.1 Electrochemical performance 69
4.2.2 Electrode and binder investigation 71
4.2.3 ICP and XPS analysis of LiNi0.5Mn1.5O4 electrode 75
Chapter 5 Conclusions 90
References 92
References
1. J.M. Tarascon, Key challenges in future Li-battery research, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 368 (2010) 3227-3241.
2. F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries, Advanced materials, 23 (2011) 1695-1715.
3. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, 18 (2015) 252-264.
4. C.M. Hayner, X. Zhao, H.H. Kung, Materials for rechargeable lithium-ion batteries, Annual review of chemical and biomolecular engineering, 3 (2012) 445-471.
5. Lithium Ion Rechargeable Batteries, Kazunori Ozawa, Willey-Vch, 2009, p.11
6. M. Mancini, F. Nobili, R. Tossici, M. Wohlfahrt-Mehrens, R. Marassi, High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose, Journal of Power Sources, 196 (2011) 9665-9671.
7. Y.-S. Park, E.-S. Oh, S.-M. Lee, Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries, Journal of Power Sources, 248 (2014) 1191-1196.
8. E. Pohjalainen, S. Räsänen, M. Jokinen, K. Yliniemi, D.A. Worsley, J. Kuusivaara, J. Juurikivi, R. Ekqvist, T. Kallio, M. Karppinen, Water soluble binder for fabrication of Li4Ti5O12 electrodes, Journal of Power Sources, 226 (2013) 134-139.
9. J.B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries†, Chemistry of Materials, 22 (2010) 587-603.
10. Y. Liu, L. Chen, Study on the electrochemical performance of LiNi0.5Mn1.5O4 with different precursor, Ionics, 18 (2012) 649-653.
11. G.B. Zhong, Y.Y. Wang, Y.Q. Yu, C.H. Chen, Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5V cathode materials for lithium ion batteries, Journal of Power Sources, 205 (2012) 385-393.
12. M.S. Whittingham, Lithium Batteries and Cathode Materials, Chemical Reviews, 104 (2004) 4271-4302.
13. J. Chen, Recent Progress in Advanced Materials for Lithium Ion Batteries, Materials, 6 (2013) 156-183.
14. M. Wakihara and O. Yamamoto, Lithium Ion Batteries:Fundamentals and Performance, Wiley-VCH. (1998)
15. R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches, Materials Science and Engineering: B, 192 (2015) 3-25.
16. A.J. Smith, H.M. Dahn, J.C. Burns, J.R. Dahn, Long-Term Low-Rate Cycling of LiCoO2∕Graphite Li-Ion Cells at 55°C, Journal of The Electrochemical Society, 159 (2012) A705.
17. Y. Kobayashi, H. Miyashiro, K. Kumai, K. Takei, T. Iwahori, I. Uchida, Precise Electrochemical Calorimetry of LiCoO2/Graphite Lithium-Ion Cell, Journal of The Electrochemical Society, 149 (2002) A978.
18. B. Xu, D. Qian, Z. Wang, Y.S. Meng, Recent progress in cathode materials research for advanced lithium ion batteries, Materials Science and Engineering: R: Reports, 73 (2012) 51-65.
19. G.B. Zhong, Y.Y. Wang, Z.C. Zhang, C.H. Chen, Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4, Electrochimica Acta, 56 (2011) 6554-6561.
20. R. Santhanam, B. Rambabu, Research progress in high voltage spinel LiNi0.5Mn1.5O4 material, Journal of Power Sources, 195 (2010) 5442-5451.
21. J.-H. Kim, N.P.W. Pieczonka, Z. Li, Y. Wu, S. Harris, B.R. Powell, Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries, Electrochimica Acta, 90 (2013) 556-562.
22. J.C. Hunter, Preparation of a new crystal form of manganese dioxide: λ-MnO2, Journal of Solid State Chemistry, 39 (1981) 142-147.
23. N.P.W. Pieczonka, Z. Liu, P. Lu, K.L. Olson, J. Moote, B.R. Powell, J.-H. Kim, Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries, The Journal of Physical Chemistry C, 117 (2013) 15947-15957.
24. X. Fang, N. Ding, X.Y. Feng, Y. Lu, C.H. Chen, Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: Electrochemical performance, diffusion coefficient and capacity loss mechanism, Electrochimica Acta, 54 (2009) 7471-7475.
25. http://www.1688.com/
26. M. Wakihara, Recent developments in lithium ion batteries, Materials Science and Engineering: R: Reports, 33 (2001) 109-134.
27. M.S. Whittingham, The Role of Ternary Phases in Cathode Reactions, Journal of The Electrochemical Society, 123 (1976) 315.
28. B. Di Pietro, M. Patriarca, B. Scrosati, On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries, Journal of Power Sources, 8 (1982) 289-299.
29. C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative Issues of Cathode Materials for Li-Ion Batteries, Inorganics, 2 (2013) 132-154.
30. A. Kraytsberg, Y. Ein-Eli, Higher, Stronger, Better…A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries, Advanced Energy Materials, 2 (2012) 922-939.
31. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells, Electrochimica Acta, 38 (1993) 1159-1167.
32. J. Morales, C. Pérez-Vicente, J.L. Tirado, Cation distribution and chemical deintercalation of Li1-xNi1+xO2, Materials Research Bulletin, 25 (1990) 623-630.
33. S. Venkatraman, Y. Shin, A. Manthiram, Phase Relationships and Structural and Chemical Stabilities of Charged Li1−xCoO2−δ and Li1−xNi0.85Co0.15O2−δ Cathodes, Electrochemical and Solid-State Letters, 6 (2003) A9.
34. A.K. Padhi, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, 144 (1997) 1188.
35. N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand, Electroactivity of natural and synthetic triphylite, Journal of Power Sources, 97-98 (2001) 503-507.
36. J.-K. Kim, G. Cheruvally, J.-W. Choi, J.-U. Kim, J.-H. Ahn, G.-B. Cho, K.-W. Kim, H.-J. Ahn, Effect of mechanical activation process parameters on the properties of LiFePO4 cathode material, Journal of Power Sources, 166 (2007) 211-218.
37. J.M. Tarascon, D. Guyomard, The Li1+xMn2O4/C rocking-chair system: a review, Electrochimica Acta, 38 (1993) 1221-1231.
38. R.J. Gummow, A. de Kock, M.M. Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells, Solid State Ionics, 69 (1994) 59-67.
39. M.M. Thackeray, Manganese oxides for lithium batteries, Progress in Solid State Chemistry, 25 (1997) 1-71.
40. A. Caballero, M. Cruz, L. Hernán, M. Melero, J. Morales, E.R.g. Castellón, Oxygen Deficiency as the Origin of the Disparate Behavior of LiM0.5Mn1.5O4 (M = Ni, Cu) Nanospinels in Lithium Cells, Journal of The Electrochemical Society, 152 (2005) A552.
41. T. Ohzuku, S. Takeda, M. Iwanaga, Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries, Journal of Power Sources, 81-82 (1999) 90-94.
42. Y. Talyosef, B. Markovsky, G. Salitra, D. Aurbach, H.J. Kim, S. Choi, The study of LiNi0.5Mn1.5O4 5-V cathodes for Li-ion batteries, Journal of Power Sources, 146 (2005) 664-669.
43. H.M. Wu, J.P. Tu, X.T. Chen, D.Q. Shi, X.B. Zhao, G.S. Cao, Synthesis and characterization of abundant Ni-doped LiNixMn2−xO4 (x=0.1–0.5) powders by spray-drying method, Electrochimica Acta, 51 (2006) 4148-4152.
44. D. Aurbach, B. Markovsky, Y. Talyossef, G. Salitra, H.-J. Kim, S. Choi, Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells, Journal of Power Sources, 162 (2006) 780-789.
45. J.H. Kim, S.T. Myung, Y.K. Sun, Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery, Electrochimica Acta, 49 (2004) 219-227.
46. G.Q. Liu, L. Wen, Y.M. Liu, Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries, Journal of Solid State Electrochemistry, 14 (2010) 2191-2202.
47. P. Axmann, C. Stinner, Secondary Batteries – Lithium Rechargeable Systems – Lithium-Ion.
48. S. Patoux, L. Daniel, C. Bourbon, H. Lignier, C. Pagano, F. Le Cras, S. Jouanneau, S. Martinet, High voltage spinel oxides for Li-ion batteries: From the material research to the application, Journal of Power Sources, 189 (2009) 344-352.
49. J. Shu, T.-F. Yi, M. Shui, Y. Wang, R.-S. Zhu, X.-F. Chu, F. Huang, D. Xu, L. Hou, Comparison of electronic property and structural stability of LiMn2O4 and LiNi0.5Mn1.5O4 as cathode materials for lithium-ion batteries, Computational Materials Science, 50 (2010) 776-779.
50. N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods, Journal of Magnetism and Magnetic Materials, 309 (2007) 100-105.
51. X.Y. Feng, C. Shen, X. Fang, C.H. Chen, Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance, Journal of Alloys and Compounds, 509 (2011) 3623-3626.
52. S.-H. Park, S.-W. Oh, C.-S. Yoon, S.-T. Myung, Y.-K. Sun, LiNi0.5Mn1.5O4 Showing Reversible Phase Transition on 3 V Region, Electrochemical and Solid-State Letters, 8 (2005) A163.
53. J.H. Kim, C.S. Yoon, S.T. Myung, J. Prakash, Y.K. Sun, Phase Transitions in Li1−δNi0.5Mn1.5O4 during Cycling at 5 V, Electrochemical and Solid-State Letters, 7 (2004) A216.
54. M. Kunduraci, J.F. Al-Sharab, G.G. Amatucci, High-Power Nanostructured LiMn2-xNixO4 High-Voltage Lithium-Ion Battery Electrode Materials: Electrochemical Impact of Electronic Conductivity and Morphology, Chemistry of Materials, 18 (2006) 3585-3592.
55. J. Liu, A. Manthiram, Kinetics Study of the 5 V Spinel Cathode LiNi0.5Mn1.5O4 Before and After Surface Modifications, Journal of The Electrochemical Society, 156 (2009) A833.
56. Y. Sun, Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures, Electrochemistry Communications, 4 (2002) 344-348.
57. H.M. Wu, I. Belharouak, A. Abouimrane, Y.K. Sun, K. Amine, Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries, Journal of Power Sources, 195 (2010) 2909-2913.
58. T.-F. Yi, Y. Xie, M.-F. Ye, L.-J. Jiang, R.-S. Zhu, Y.-R. Zhu, Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries, Ionics, 17 (2011) 383-389.
59. G.B. Zhong, Y.Y. Wang, Y.Q. Yu, C.H. Chen, Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5V cathode materials for lithium ion batteries, Journal of Power Sources, 205 (2012) 385-393.
60. L. Zhou, D. Zhao, X. Lou, LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries, Angewandte Chemie, 51 (2012) 239-241.
61. G. Zhao, Y. Lin, T. Zhou, Y. Lin, Y. Huang, Z. Huang, Enhanced rate and high-temperature performance of La0.7Sr0.3MnO3-coated LiNi0.5Mn1.5O4 cathode materials for lithium ion battery, Journal of Power Sources, 215 (2012) 63-68.
62. Y. Lee, J. Mun, D.-W. Kim, J.K. Lee, W. Choi, Surface modification of LiNi0.5Mn1.5O4 cathodes with ZnAl2O4 by a sol–gel method for lithium ion batteries, Electrochimica Acta, 115 (2014) 326-331.
63. J.S. Chae, S.-B. Yoon, W.-S. Yoon, Y.-M. Kang, S.-M. Park, J.-W. Lee, K.C. Roh, Enhanced high-temperature cycling of Li2O–2B2O3-coated spinel-structured LiNi0.5Mn1.5O4 cathode material for application to lithium-ion batteries, Journal of Alloys and Compounds, 601 (2014) 217-222.
64. W.H. Jang, M.C. Kim, S.N. Lee, J.Y. Ahn, V. Aravindan, Y.S. Lee, Enhanced elevated temperature performance of LiFePO4 modified spinel LiNi0.5Mn1.5O4 cathode, Journal of Alloys and Compounds, 612 (2014) 51-55.
65. J.-H. Cho, J.-H. Park, M.-H. Lee, H.-K. Song, S.-Y. Lee, A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case, Energy & Environmental Science, 5 (2012) 7124.
66. N. Yabuuchi, K. Shimomura, Y. Shimbe, T. Ozeki, J.-Y. Son, H. Oji, Y. Katayama, T. Miura, S. Komaba, Graphite-Silicon-Polyacrylate Negative Electrodes in Ionic Liquid Electrolyte for Safer Rechargeable Li-Ion Batteries, Advanced Energy Materials, 1 (2011) 759-765.
67. S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, K. Konno, Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries, The Journal of Physical Chemistry C, 115 (2011) 13487-13495.
68. Z. Zhang, T. Zeng, Y. Lai, M. Jia, J. Li, A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries, Journal of Power Sources, 247 (2014) 1-8.
69. Z. Zhang, T. Zeng, C. Qu, H. Lu, M. Jia, Y. Lai, J. Li, Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder, Electrochimica Acta, 80 (2012) 440-444.
70. A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori, K. Zaghib, LiFePO4 water-soluble binder electrode for Li-ion batteries, Journal of Power Sources, 163 (2007) 1047-1052.
71. A.D. Pasquier, Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li-Ion Batteries, Journal of The Electrochemical Society, 145 (1998) 472.
72. V.H. Nguyen, W.L. Wang, E.M. Jin, H.-B. Gu, Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode, Applied Surface Science, 282 (2013) 444-449.
73. S.S. Zhang, K. Xu, T.R. Jow, Evaluation on a water-based binder for the graphite anode of Li-ion batteries, Journal of Power Sources, 138 (2004) 226-231.
74. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 334 (2011) 75-79.
75. J. Xu, S.-L. Chou, Q.-f. Gu, H.-K. Liu, S.-X. Dou, The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries, Journal of Power Sources, 225 (2013) 172-178.
76. J.-H. Lee, U. Paik, V.A. Hackley, Y.-M. Choi, Effect of Carboxymethyl Cellulose on Aqueous Processing of Natural Graphite Negative Electrodes and their Electrochemical Performance for Lithium Batteries, Journal of The Electrochemical Society, 152 (2005) A1763.
77. J. Chong, S. Xun, H. Zheng, X. Song, G. Liu, P. Ridgway, J.Q. Wang, V.S. Battaglia, A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells, Journal of Power Sources, 196 (2011) 7707-7714.
78. S.-L. Chou, J.-Z. Wang, H.-K. Liu, S.-X. Dou, Rapid Synthesis of Li4Ti5O12Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery, The Journal of Physical Chemistry C, 115 (2011) 16220-16227.
79. J. Li, R.B. Lewis, J.R. Dahn, Sodium Carboxymethyl Cellulose, Electrochemical and Solid-State Letters, 10 (2007) A17.
80. N.S. Hochgatterer, M.R. Schweiger, S. Koller, P.R. Raimann, T. Wöhrle, C. Wurm, M. Winter, Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability, Electrochemical and Solid-State Letters, 11 (2008) A76.
81. Z. Wang, N. Dupré, A.-C. Gaillot, B. Lestriez, J.-F. Martin, L. Daniel, S. Patoux, D. Guyomard, CMC as a binder in LiNi0.4Mn1.6O4 5V cathodes and their electrochemical performance for Li-ion batteries, Electrochimica Acta, 62 (2012) 77-83.
82. http://www.twwiki.com/
83. Y.-R. Jhan, C.-Y. Lin, J.-G. Duh, Preparation and characterization of Ruthenium doped Li4Ti5O12 anode material for the enhancement of rate capability and cyclic stability, Materials Letters, 65 (2011) 2502-2505.
84. M. Kunduraci, G.G. Amatucci, The effect of particle size and morphology on the rate capability of 4.7V LiMn1.5+δNi0.5−δO4 spinel lithium-ion battery cathodes, Electrochimica Acta, 53 (2008) 4193-4199.
85. H. Rong, M. Xu, L. Xing, W. Li, Enhanced cyclability of LiNi0.5Mn1.5O4 cathode in carbonate based electrolyte with incorporation of tris(trimethylsilyl)phosphate (TMSP), Journal of Power Sources, 261 (2014) 148-155.
86. Y. Lin, Y. Yang, R. Yu, H. Lai, Z. Huang, Enhanced electrochemical performances of LiNi0.5Mn1.5O4 by surface modification with superconducting YBa2Cu3O7, Journal of Power Sources, 259 (2014) 188-194.
87. K. Kim, Y. Kim, E.-S. Oh, H.-C. Shin, The role of fluoride in protecting LiNi0.5Mn1.5O4 electrodes against high temperature degradation, Electrochimica Acta, 114 (2013) 387-393.
88. Chai MN, Isa MIN., The Oleic Acid Composition Effect on the Carboxymethyl Cellulose Based Biopolymer Electrolyte. Journal of Crystallization Process and Technology. 2013;03:1-4.
89. Y. Peng, P. Wu, A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process, Polymer, 45 (2004) 5295-5299.
90. Y. Bormashenko, R. Pogreb, O. Stanevsky, E. Bormashenko, Vibrational spectrum of PVDF and its interpretation, Polymer Testing, 23 (2004) 791-796.
91. C. Fongy, A.C. Gaillot, S. Jouanneau, D. Guyomard, B. Lestriez, Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO[sub 4] Composite Electrodes, Journal of The Electrochemical Society, 157 (2010) A885.
92. S. Komaba, N. Yabuuchi, T. Ozeki, K. Okushi, H. Yui, K. Konno, Y. Katayama, T. Miura, Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media, Journal of Power Sources, 195 (2010) 6069-6074.
93. J.S. Bridel, T. Azaïs, M. Morcrette, J.M. Tarascon, D. Larcher, Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries†, Chemistry of Materials, 22 (2010) 1229-1241.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *