帳號:guest(18.118.93.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林雅婷
作者(外文):Lin, Ya-Ting
論文名稱(中文):以還原氧化石墨烯/奈米銅線複合材料製備電性穩定之可撓透明導電薄膜
論文名稱(外文):Fabrication of flexible transparent conductive film with high electrical stability using reduced graphene oxide/copper nanowire composites
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
口試委員(中文):李紫原
林建宏
口試委員(外文):Lee, Chi-Young
Lin, Jarrn-Horng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031527
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:86
中文關鍵詞:奈米銅線還原氧化石墨烯透明導電薄膜
外文關鍵詞:opper nanowire (CuNW)reduced graphene oxide (rGO),transparent conducting film (TCF)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:67
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
透明導電薄膜為許多電子產品內不可或缺之材料,而金屬奈米線由於具低電阻、高光穿透度及高可撓曲之特性,因此蔚為現今透明導電薄膜應用之主要研究,其中,奈米銅線(Copper nanowire, CuNW)即為一常用材料之選擇。但習知CuNW於大氣下易氧化,進而影響其電性表現,為此本研究遂嘗試將還原氧化石墨烯(Reduced graphene oxide, rGO)塗佈於CuNW薄膜上以作為隔絕空氣的保護層,並探討不同rGO製備方法對其長時間電性之表現。首先,本研究以還原反應溶液法合成出線徑58 ± 9 nm,線長大於10 μm之CuNW,所製備CuNW的薄膜最佳光電表現為穿透度89.2% @ 550 nm和片電阻22.0 ± 0.6 /sq.。將其置於大氣下15天後,其片電阻飆升至256.7 ± 2.1 /sq.;當時間延長至26天時,其已成為絕緣體。此即凸顯本研究欲改善CuNW於長時間電性穩定表現之必要性。當利用浸塗法塗佈化學還原還原氧化石墨烯(Chemically reduced graphene oxide, c-rGO)於CuNW薄膜上時,由於c-rGO之疏水特性使其無法完整貼附於CuNW表面,故此c-rGO/CuNW複合薄膜之片電阻亦隨暴露大氣時間之增加而飆升。另一方面,如先將氧化石墨烯(Graphene oxide, GO)塗佈於CuNW薄膜上,再於氫氣氣氛中進行熱還原處理(150oC、3 hr)以使之生成氫氣還原氧化石墨烯(Hydrogen reduced graphene oxide, h-rGO),由於大面積GO可完整服貼於CuNW表面,故經過30天後,h-rGO/CuNW複合薄膜之片電阻從25.1 ± 0.1 /sq.僅略升至42.2 ± 0.1 /sq.,穿透度亦可維持85.9% @ 550 nm。由動態撓曲試驗顯示,h-rGO/CuNW複合薄膜於曲率半徑5.3 mm下連續動態彎曲2500次,其片電阻僅略升0.6 /sq.。基於實驗結果,本研究所研發之h-rGO/CuNW複合薄膜可提供CuNW薄膜於長時間下之穩定電性表現,且兼具高穿透度及高可撓性,於未來光電產業所需透明導電薄膜具極大之應用潛力。
Among the materials for preparing transparent conductive films (TCFs), metal nanowire is gaining a great deal of interest owing to advantages of low sheet resistance (Rsh), high transparency and high flexibility, and copper nanowires (CuNWs) is one of the metal nanowires been investigated. However, CuNWs face the serious problem of oxidation, which results in the deterioration on electrical conductivity. In this work, we developed a highly stable electrical approach based on reduced graphene oxide (rGO)/ CuNW for TCFs. The presence of the rGO playing a role a gas barrier layer can effectively overcome the problem of CuNW oxidation. The electrical stability of the rGO/CuNW films prepared by varied syntheses were investigated systematically. The CuNWs with an average diameter of 58 ± 9 nm and a length longer than 10 μm were synthesized through a solution-based method. The best optoelectrical property of the CuNW film is 89.2% @ 550 nm and 22.0 ± 0.6 Ω/sq. After exposure to ambient atmosphere for 15 days, the Rsh of CuNW film substantially raised to 256.7 ± 2.1 Ω/sq., and became an insulator after 26 days. To solve the oxidation problem, two rGO fabrication processes were developed, one was chemically reduced graphene oxide (c-rGO), and the other was treating the graphene oxide by thermal reduction under hydrogen to form h-rGO. Similar trend of variety in Rsh between c-rGO/CuNW film and CuNW film was detected. On the contrast, after exposure to ambient atmosphere for 30 days, the Rsh of h-rGO/CuNW film was slightly increased from 25.1 ± 0.1 /sq. to 42.2 ± 0.1 /sq. accompanied a transmittance of 85.9% @ 550 nm. Such high electrical stability is due to the complete coverage of h-rGO on CuNW caused by the hydrophilicity of GO in nature. The high flexibilityof h-rGO/CuNW film was also demonstrated. Based upon the obtained results, the synthesized h-rGO/CuNW film possesses high electrical stability and flexibility, which is a potential material in TCFs.
摘要.............................................................................................................I
Abstract……………………………………..............................................II
致謝……………………………………………………………………..III
目錄……………………………………………………………………..IV
表目錄……………………………………………………………….....VII
圖目錄………………………………………………………………...VIII
第一章 緒論……………………………………………………………..1
1.1 研究背景…………………………………………………………….1
1.2 研究動機…………………………………………………………….4
第二章 文獻回顧……………………………………………………......7
2.1 常見之透明導電薄膜簡介………………………………………….7
2.1.1 金屬氧化物………………………………………………………..7
2.1.2 導電高分子………………………………………………………10
2.1.3 石墨烯……………………………………………………………12
2.1.4 奈米金屬線………………………………………………………18
2.2 奈米銅線之成長方法……………………………………………...23
2.2.1 模板法……………………………………………………………24
2.2.2 氣相合成法:氣–液–固法………………………………………..25
2.2.3 液相合成法:還原反應溶液法…………………………………..25
2.3 奈米銅線及其複合材料於透明導電薄膜之應用………………...30
2.3.1 純奈米銅線………………………………………………………30
2.3.2 奈米銅線與導電高分子之複合材料……………………………34
2.3.3 奈米銅線與玻璃纖維強化高分子之複合材料…………………35
2.3.4 奈米銅線與透明導電氧化物之複合材料………………………36
2.3.5 奈米銅線與石墨烯之複合材料…………………………………37
第三章 研究內容與實驗步驟…………………………………………39
3.1 實驗藥品與器材…………………………………………………...40
3.2 實驗步驟…………………………………………………………...41
3.2.1 奈米銅線之製備及其濃度之測定………………………………41
3.2.2 氧化石墨之製備…………………………………………………42
3.2.3 化學還原氧化石墨烯之製備……………………………………43
3.2.4 奈米銅線薄膜之製備……………………………………………43
3.2.5 化學還原氧化石墨烯/奈米銅線複合薄膜之製備……………...44
3.2.6 氫氣還原氧化石墨烯/奈米銅線複合薄膜之製備……………...45
3.3 實驗分析…………………………………………………………...46
3.3.1 顯微結構分析……………………………………………………46
3.3.2 晶體結構分析……………………………………………………46
3.3.3 鍵結結構分析……………………………………………………47
3.3.4 電性分析…………………………………………………………47
3.3.5 穿透度分析………………………………………………………47
3.5.6 可撓測試………………………………………………………....47
第四章 結果與討論……………………………………………………49
4.1 奈米銅線之合成及其特性………………………………………...49
4.1.1 奈米銅線薄膜之微觀結構………………………………………50
4.1.2 奈米銅線薄膜之光電特性………………………………………51
4.1.3 奈米銅線薄膜之可撓性…………………………………………54
4.2 化學還原氧化石墨烯/奈米銅線複合薄膜之特性………………..55
4.2.1 化學還原氧化石墨烯之特性……………………………………56
4.2.2 化學還原氧化石墨烯/奈米銅線複合薄膜之微觀結構………...58
4.2.3 化學還原氧化石墨烯/奈米銅線複合薄膜之光電特性………...60
4.3 氫氣還原氧化石墨烯/奈米銅線複合薄膜之特性………………..62
4.3.1 氫氣還原氧化石墨烯之特性……………………………………63
4.3.2 氫氣還原氧化石墨烯/奈米銅線複合薄膜之微觀結構………...65
4.3.3 氫氣還原氧化石墨烯/奈米銅線複合薄膜之光電特性………...67
4.3.4 氫氣還原氧化石墨烯/奈米銅線複合薄膜之可撓性...................71
第五章 結論……………………………………………………………73
參考文獻………………………………………………………………..75
[1] 王慶鈞、王瑞豪、連水養、陳家富,“透明導電薄膜之應用概論”,機械工業雜誌,338 (2011) 5–9。
[2] 藍銀鋒,“常溫鍍製銦錫氧化物於高分子軟性基板”,逢甲大學材料科學與工程學系 博士論文,(2010)。
[3] K. Ghaffarzadeh and R. Das, Summary of main market figures. K. Ghaffarzadeh and R. Das, editors. Transparent Conductive Films (TCF) 2015-2025: Forecasts, Markets, Technologies. IDTechEx, (2015) 2014–2024.
[4] D. S. Hecht, L. Hu and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures”, Advanced Materials, 23 (2011) 1482–1513.
[5] U. S. Geological Survey, Mineral Commodity Summaries, Indium, U. S. Department of the Interior, Washington, D.C., USA, (2015), 74.
[6] M. A. Green, “Estimates of Te and In prices from direct mining of known ores”, Progress in Photovoltaics: Research and Applications, 17 (2009) 347–359.
[7] X. Y. Zeng, Q. K. Zhang, R. M. Yu and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer”, Advanced Materials, 22 (2010) 4484–4488.
[8] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells”, Advanced Functional Materials, 21 (2011) 1076–1081.
[9] A. Elschner and W. Lövenich, “Solution-deposited PEDOT for transparent conductive applications”, MRS Bulletin, 36 (2011) 794–798.
[10] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nature Nanotechnology, 5 (2010) 574–578.
[11] J. H. Lee, D. W. Shin, V. G. Makotchenko, A. S. Nazarov, V. E. Fedorov, Y. H. Kim, J. Y. Choi, J. M. Kim and J. B. Yoo, “One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets”, Advanced Materials, 21 (2009) 4383–4387.
[12] A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films”, Advanced Materials, 22 (2010) 3558–3563.
[13] Y. Won, A. Kim, D. Lee, W. Yang, K. Woo, S. Jeong and J. Moon, “Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics”, NPG Asia Materials, 6 (2014) e105.
[14] J. Chen, W. Zhou, J. Chen, Y. Fan, Z. Zhang, Z. Huang, X. Feng, B. Mi, Y. Ma and W. Huang, “Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells”, Nano Research, 8 (2015) 1017–1025.
[15] H. G. Im, S. H. Jung, J. Jin, D, Lee, J. Lee, D. Lee, J. Y. Lee, I. D. Kim and B.S. Bae, “Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: A highly oxidation-resistant copper nanowire electrode for flexible optoelectronics”, ACS Nano, 8 (2014) 10973–10979.
[16] I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes”, ACS Nano, 7 (2013) 1811–1816.
[17] A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates”, Advanced Materials, 23 (2011) 4798–4803.
[18] L. Shi, R. Wang, H Zhai, Y. Liu, L. Gao and J. Sun, “A long-term oxidation barrier for copper nanowires: graphene says yes”, Physical Chemistry Chemical Physics, 17 (2015) 4231–4236.
[19] G. Rupprecht, “Untersuchungen der elektrischen und lichtelektrischen leitfähigkeit dűnner indiumoxydschichten”, Zeitschrift für Physik, 139 (1954) 504–518.
[20] H. J. J. van Boort and R. Groth, “Low-pressure sodium lamps with indium oxide filter”, Philips Technical Review, 29 (1968) 17–23.
[21] K. Nishio, T. Sei and T. Tsuchiya, “Preparation and electrical properties of ITO thin films by dip-coating process”, Journal of Materials Science, 31 (1996) 1761–1766.
[22] R. B. H. Tahar, T. Ban, Y. Ohya and Y. Takahashi1, “Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique”, Journal of Applied Physics, 83 (1998) 2139.
[23] H. Morikawa and M. Fujita, “Crystallization and decrease in resistivity on heat treatment of amorphous indium tin oxide thin films prepared by d.c. magnetron sputtering”, Thin Solid Films, 339 (1999) 309–313.
[24] D. R. Cairns, R. P. Witte II, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates”, Applied Physics Letters 76 (2000) 1425–1427.
[25] Y. F. Lan, H. R. Chang and J. L. He, “Improvements of indium tin oxide film deposited on poly(ethylene terephthalate) substrates by plasma-polymerized hydrogenated silicon–carbon–oxide buffer layer”, Japanese Journal of Applied Physics, 49 (2010) 05EA07.
[26] K. A. Sierros, N. J. Morrisa, S. N. Kukurekab and D. R. Cairnsa, “Dry and wet sliding wear of ITO-coated PET components used in flexible optoelectronic applications”, Wear, 267 (2009) 625–631.
[27] K. A. Sierros, N. J. Morris, K. Ramji and D. R. Cairns, “Stress–corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices”, Thin Solid Films, 517 (2009) 2590–2595.
[28] T. Minami and T. Miyata, “Present status and future prospects for development of non-or reduced-indium transparent conducting oxide thin films”, Thin Solid Films, 517 (2008) 1474–1477.
[29] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang and A.J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x”, Journal of the Chemical Society, Chemical Communications, 16 (1977) 578–580.
[30] 黃桂武,“共軛性導電高分子材料技術簡介”,工業材料雜誌,288 (2010) 51–65。
[31] 黃桂武,“軟性印製透明導電高分子材料技術發展”,光連:光電產業與技術情報,102 (2012) 58–65.
[32] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells”, Advanced Functional Materials, 21 (2011) 1076–1081.
[33] S. I. Na, S. S. Kim, J. Jo and D. Y. Kim, “Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes”, Advanced Materials, 20 (2008) 4061–4067.
[34] R. Paetzold, K. Heuser, D. Henseler, S. Roeger, G. Wittmann and A. Winnacker, “Performance of flexible polymeric light-emitting diodes under bending conditions”, Apply Physics Letter, 82 (2003) 3342–3344.
[35] A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, R.A.J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol”, Organic Electronics, 9 (2008) 727–734.
[36] E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S. A. Choulis, “Thermal degradation mechanisms of PEDOT:PSS”, Organic Electronics, 10 (2009) 61–66.
[37] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang and S. V. Dubonos, “Electric field effect in atomically thin carbon films”, Science, 306 (2004) 666–669.
[38] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, 6 (2007) 183–191.
[39] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M.S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2”, Nature Nanotechnology, 3 (2008) 206–209.
[40] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H.L. Stormer, “Ultrahigh electron mobility in suspended graphene”, Solid State Communications, 146 (2008) 351–355.
[41] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Letters, 8 (2008) 902–907.
[42] C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, 321 (2008) 385–388.
[43] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine structure constant defines visual transparency of graphene”, Science, 320 (2008) 1308.
[44] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, “A roadmap for graphene”, Nature, 490 (2012) 192–200.
[45] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Sanjay K. Banerjee, L. Colombo and R.S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science, 324 (2009) 1312–1314.
[46] G. Eda, G. Fanchini and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material”, Nature Nanotechnology, 3 (2008) 270–274.
[47] V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, “High-throughput solution processing of large-scale graphene”, Nature Nanotechnology, 4 (2009) 25–29.
[48] J. B. Wu, M. Agrawal, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen and P. Peumans, “Organic light-emitting diodes onsolution-processed graphene transparent electrodes”, ACS Nano, 4 (2010) 43–48.
[49] N. Formica, D. S. Ghosh, T. L. Chen, C. Eickhoff, I. Bruder and V. Pruneri, “Highly stable Ag–Ni based transparent electrodes on PET substrates for flexible organic solar cells”, Solar Energy Materials & Solar Cells, 107 (2012) 63–68.
[50] D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani and V. Pruneri, “Widely transparent electrodes based on ultrathin metals”, Optics Letters, 34 (2009) 325–327.
[51] M. Theuring, V. Steenhoff, S. Geißendörfer, M. Vehse, K. von Maydell and C. Agert, “Laser perforated ultrathin metal films for transparent electrode applications”, Optics Express, 23 (2015) A254–A262.
[52] D. S. Ghosh, T. L. Chen and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid”, Applied Physics Letters, 96 (2010) 041109.
[53] A. Morag, V. Ezersky, N. Froumin, D. Mogiliansky and R. Jelinek, “Transparent, conductive gold nanowire networks assembled from soluble Au thiocyanate”, Chemical Communications, 49 (2013) 8552–8554.
[54] L. Hu, H. S. Kim, J. Y. Lee, P. Peumans and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes”, ACS Nano, 4 (2010) 2955–2963.
[55] H. Wu, L. Hu, M.W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M.D. McGehee and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode”, Nano Letters, 10 (2010) 4242–4248.
[56] S. Bhanushali, P. Ghosh, A Ganesh and W. Cheng, “1D copper nanostructures: progress, challenges and opportunities”, Small, 11.11 (2015) 1232–1252.
[57] H. J. Choi, Vapor–liquid–solid growth of semiconductor nanowires. G. C. Yi, editor. Semiconductor nanostructures for optoelectronic devices: Processing, characterization and applications. Springer: New York, (2012) 1–36.
[58] K. B. Lee, J. H. Seo, J. P. Ahn, H. Kwon and H. R. Yang, “A simple route for the synthesis of copper nanowires”, Metals and Materials International, 18.4 (2012) 727–730.
[59] E. Y. Bol'shagin and V. I. Roldughin, “Kinetics of nucleation and growth of metal nanoparticles in the presence of surfactants”, Colloid Journal, 74 (2012) 649–654.
[60] Y. Chang, M. L. Lye and H. C. Zeng, “Large-scale synthesis of high-quality ultralong copper nanowires”, Langmuir, 21 (2005) 3746–3748.
[61] M. Jin, G. He, H. Zhang, J. Zeng, Z. Xie, Y. Xia, “Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent”, Angewandte Chemie International Edition, 50 (2011) 10560–10564.
[62] Y. Q. Liu, M. Zhang, F. X. Wang and G. B. Pan, “Facile microwave-assisted synthesis of uniform single-crystal copper nanowires with excellent electrical conductivity”, RSC Advances, 2 (2012) 11235–11237.
[63] X. Zhang, D. Zhang, X. Ni and H. Zheng, “One-step preparation of copper nanorods with rectangular cross sections”, Solid State Communications, 139 (2006) 412–414.
[64] X. Zhang and Z. Cui, “Synthesis of Cu nanowires via solventhermal reduction in reverse microemulsion system”, Journal of Physics: Conference Series, 152 (2009) 012022.
[65] H. J. Yang, S. Y. He and H. Y. Tuan, “Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications”, Langmuir, 30 (2013) 602–610.
[66] Y. Shi, H. Li, L. Q. Chen and X. J. Huang, “Obtaining ultra-long copper nanowires via a hydrothermal process”, Science and Technology of Advanced Materials, 6 (2005) 761–765.
[67] S. Li, Y. Chen, L. Huang and D. Pan, “Large-scale synthesis of well-dispersed copper banowires in an electric pressure cooker and their application in transparent and conductive networks”, Inorganic Chemistry, 53 (2014) 4440–4444.
[68] H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai and D. L. Peng, “Copper nanowires as fully transparent conductive electrodes”, Scientific Reports, 3 (2013) 02323.
[69] G. S. Lotey and S. Kumar, “Fabrication and electrical characterization of highly ordered copper nanowires”, Applied Nanoscience, 2 (2012) 7–13.
[70] W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide”, Journal of the American Chemical Society, 80 (1958) 1339.
[71] Y. J. Chen, Y. A. Li, M. C Yip and N. H. Tai, “Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles”, Composites Science and Technology, 80 (2013) 80–86.
[72] M. S Dresselhaus, A. Jorio and R. Saito, “Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy”, Annual Review of Condensed Matter Physics, 1 (2010) 89–108.
[73] H. J. Chu, C. Y. Lee and N. H. Tai, “Green reduction of graphene oxide by Hibiscussabdariffa L. to fabricate flexible graphene electrode”, Carbon, 80 (2014) 725–733.
[74] W. X. Wang, S. H. Liang, T. Yu, D. H. Li, Y. B. Li and X. F. Han, “The study of interaction between graphene and metals by Raman spectroscopy”, Journal of Applied Physics, 109 (2011) 07C501.
[75] R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva and A. K. Geim, “Unimpeded permeation of water through Helium-leak–Tight graphene-based membranes”, Science, 335 (2012) 442–444.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *