帳號:guest(3.17.76.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃琇郁
作者(外文):Huang, Siou yu
論文名稱(中文):AlCrNbSiTi/(AlCrNbSiTi)50N50 濺鍍多層膜之開發
論文名稱(外文):Development of AlCrNbSiTi/(AlCrNbSiTi)50N50 multilayer films deposited by sputtering
指導教授(中文):葉均蔚
指導教授(外文):Yeh, Jien Wei
口試委員(中文):洪健龍
葉安洲
蔡哲瑋
曹春暉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031524
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:156
中文關鍵詞:高熵多層膜高熵合金膜高熵氮化膜物理性質機械性質高溫性質
相關次數:
  • 推薦推薦:0
  • 點閱點閱:89
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗為貼近切削工業實際工作情形,選用 WC-10 % Co 為基板,並以真空電弧熔煉製備之 AlCrNbSiTi 高熵合金為靶材,使用反應式直流磁控濺鍍法配合氬氣流量的調整以及氮氣閥門的開關,在 400oC 、 0 及 -100 V 環境下鍍製 AlCrNbSiTi 合金層與 (AlCrNbSiTi)50N50 氮化層交替堆疊之多層膜,藉由改變多層膜層數探討多層化對微結構、硬度、附著性及韌性的影響。隨後將多層膜在 900oC 下大氣退火 2 hr 以瞭解其抗氧化與熱穩定性質。最後選擇綜合表現最佳的多層膜鍍覆於 WC-Co 三角形銑刀片上對 304 不鏽鋼做銑削測試,並與商用 TiN 及 TiAlN 做比較。
實驗結果發現在 -100 V 偏壓下鍍製之 200 層膜 W1-200N 擁有最佳的綜合性質,W1-200N 週期 Ʌ 為 11.2 nm,硬度 31.2 GPa已經超越合金膜與氮化膜的硬度平均 (39 + 12.6)/2 GPa,彈性模數亦提高至 487 GPa 超過氮化膜的 453 GPa,出現超模數現象,代表需要更大的應力才能使 W1-200N 產生彈性變形,W1-200N薄膜斷面呈現階梯與波浪狀的形貌說明多層設計能有效使裂縫前進時受到界面阻礙而偏折提高薄膜韌性,HRC 附著性測試也指出 W1-200N 附著性落在最好的 HF1 等級,此外,將經過 900oC 大氣退火兩小時的 S1-200N 製成 TEM 試片,確認氧化層厚度約 130 nm,且界面未發生擴散 (interdiffusion) 現象,具備良好抗氧化性與熱穩定性。在 W1-200N 中,界面產生的外延強化效果已經非常明顯,薄膜突破材料本質特性極限,得到比單層膜更突出的性質。WC-Co 三角形銑刀片上鍍200層膜(I1-200N)銑削結果刀腹磨耗長度 340 μm 比未鍍膜銑刀片、商用單層TiN、TiAlN 以及(AlCrNbSiTi)50N50氮化膜都短,且銑削後期切屑仍有金屬光澤,表示刀片保持銳利,I1-200N 切削性脫穎而出,綜合以上特性顯示多層膜在刀具保護上更有商用潛力與競爭力。
High-entropy multilayer thin films composed of AlCrNbSiTi and (AlCrNbSiTi)50N50 was sputter-deposited on tungsten carbide. We controlled the film thickness at 1 μm, and then probe into how the number of layers affected the properties of multilayer coatings. For comparison, multilayer, TiN and TiAlN films were annealed at 900oC in air for 2 hours to investigate their oxidation properties. Furthermore, after the milling test of 304 stainless steel, the tungsten carbide insert with optimal multilayer, TiN and TiAlN films were studied to estimate their cutting performance.
The results reveal that the 200-layer films deposited at substrate bias -100 V with period (Ʌ) in 11.2 nm possesses the optimal properties. The hardness of 31.2 GPa and Young’s modulus of 487 GPa illustrate the occurance of the supermodulus phenomenon. From the stair-like cross- section configuration, we can know that the toughness becomes better than single layer coatings. In adhesion test, 200-layer film’s adhesion is classified to the best level, HF1. Besides, the 200-layer coating also has remarkable oxidation resistance and thermal stability. The thickness of oxidation layer is 134 nm measured by transmission electron microscopy, and there is no severe interdiffusion appears at the interface within the films. Possessing the outstanding toughness, adhesion, oxidation resistance, thermal stability and suitable hardness, the tungsten carbide insert with the 200-layer coating performs better than that with TiN, TiAlN coatings in milling test. Above results demonstrate the multilayer coatings have huge potential for the application in the cutting industry.
摘 要 i
Abstract iii
致 謝 v
目 錄 viii
圖目錄 xii
表目錄 xxiii
壹、前 言 1
貳、文獻回顧 4
2.1 薄膜鍍製技術 4
2.1.1 物理氣相沉積 (PVD) 4
2.1.2 濺鍍技術 8
2.1.3 磁控介紹及優點 10
2.1.4 沉積與附著機制 12
2.1.5 微結構 14
2.2 薄膜種類與發展 21
2.2.1 薄膜發展概況 21
2.2.2 薄膜分類與介紹 23
2.2.3.1 本質薄膜 25
2.2.3.2 外延薄膜 26
2.2.3 多層膜強化機制 39
2.2.3.1 Non-ideal composition modulations + dislocation glide within layers 42
2.2.3.2 Hall-Petch strengthening 48
2.3 高熵系統 50
2.3.1 高熵之濫觴 50
2.3.2 高熵合金定義 52
2.3.3 高熵合金特色 55
2.3.4 高熵氮化膜沿革 63
2.4 本論文研究目的 65
參、實驗流程 67
3.1 靶材製作 68
3.2 基板準備 70
3.2.1 基板種類 70
3.2.2 基板前處理 71
3.3 薄膜鍍製 73
3.4 薄膜基本性質分析 77
3.4.1 成分 77
3.4.2 晶格結構 79
3.4.3 薄膜形貌與微結構 79
3.5 薄膜機械性質分析 80
3.5.1 硬度與楊氏係數 80
3.5.2 附著性 82
3.5.3 切削性 84
3.6 薄膜熱性質分析 86
3.6.1 抗氧化性 86
3.6.2 熱穩定性 87
肆、結果與討論 88
4.1 試片命名方法 88
4.2 薄膜層數對未施加偏壓鍍製之多層膜的影響 (W0 系列薄膜) 89
4.2.1 成分確認 89
4.2.2 結構分析 91
4.2.3 表面與橫截面形貌 93
4.2.4 機械性質 97
4.3 薄膜層數對施加 -100 V 偏壓鍍製之多層膜的影響 (W1 系列薄膜) 99
4.3.1 成分分析 99
4.3.2 結構分析 100
4.3.3 表面與橫截面形貌 103
4.3.4 機械性質 107
4.4 W1 系列薄膜與商用 TiN、TiAlN 性質比較 112
4.4.1 附著性測試 114
4.4.2 氧化測試 116
4.4.2.1 氧化層厚度 116
4.4.2.2 TEM 分析 120
4.4.3 切削測試 126
伍、結 論 139
陸、本實驗貢獻 146
柒、未來研究方向 147
參考文獻 148
[1] Stan Veprek and Maritza J.G. Veprek-Heijman, "Industrial Applications of Superhard Nanocomposite Coatings," Surface and Coatings Technology, 202 (2008) 5063-5073.
[2] 陳仲宜 and 莊允中, 前瞻奈米鍍膜技術與潛力市場探索: 經濟部技術處產業技術知識服務 (ITIS) 計畫, 2005.
[3] Wolf‐Dieter Münz, "Titanium aluminum nitride films: A new alternative to TiN coatings " Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, 4 (1986) 2717-2725.
[4] Hermann A Jehn, Siegfried Hofmann, Vera‐Ellen Rückborn, et al., "Morphology and properties of sputtered (Ti,Al)N layers on high speed steel substrates as a function of deposition temperature and sputtering atmosphere," Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, 4 (1986) 2701-2705.
[5] O. Knotek, M. Böhmer and T. Leyendecker, "On structure and properties of sputtered Ti and Al based hard compound films," Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, 4 (1986) 2695-2700.
[6] O. Knotek, F. Lo¨ffler and H. -J. Scholl, "Properties of arc-evaporated CrN and (Cr, Al)N coatings," Surface and Coatings Technology, 45 (1991) 53-58.
[7] H. Holleck and V. Schier, "Multilayer PVD Coatings for Wear Protection," Surface and Coatings Technology, 76-77 (1995) 328-336.
[8] C. Ducros and F. Sanchette, "Multilayered and Nanolayered Hard Nitride Thin Films Deposited by Cathodic Arc Evaporation. Part 2: Mechanical Properties and Cutting Performances," Surface and Coatings Technology, 201 (2006) 1045-1052.
[9] P.-K. Huang, J.-W. Yeh, T.-T. Shun, et al., "Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating," Advanced Engineering Materials, 6 (2004) 74-78.
[10] Jien-Wei Yeh, "Recent progress in high-entropy alloys," Annales de Chimie-Science des Matériaux, 31 (2006) 633-648.
[11] Ming-Hung Tsai and Jien-Wei Yeh, "High-Entropy Alloys: A Critical Review," Materials Research Letters, 2 (2014) 107-123.
[12] J.-W. Yeh, S.-K. Chen, S.-J. Lin, et al., "Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes," Advanced Engineering Materials, 6 (2004) 299-303.
[13] 賴加瀚, "Preparation and Characterization of Multi-element Al-Cr-Ta-Ti-Zr-N Coatings," Doctoral Dissertation, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2007.
[14] 黃炳剛, "On High-Entropy Alloy and Nitride Coatings Sputtered from AlCrNbSiTiV Target," Doctoral Dissertation, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2009.
[15] Ping-Kang Huang and Jien-Wei Yeh, "Inhibition of grain coarsening up to 1000°C in (AlCrNbSiTiV)N superhard coatings," Scripta Materialia, 62 (2010) 105-108.
[16] 謝明曉, "(AlCrNbSiTi)薄膜田口法最佳化之研究," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2011.
[17] Wan-Jui Shen, Ming-Hung Tsai, Yee-Shyi Chang, et al., "Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings," Thin Solid Films, 520 (2012) 6183-6188.
[18] W. J. Shen, M. H. Tsai, K. Y. Tsai, et al., "Superior Oxidation Resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride," Journal of The Electrochemical Society, 160 (2013) C531-C535.
[19] Wan-Jui Shen, "Study on Microstructures, Mechanical Properties and Oxidation Behavior of High-Entropy (AlCrNbSiTi)Nx Metallic and Nitride Films," Doctoral Dissertation, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2014.
[20] Donald M. Mattox, "Chapter 1 - Introduction," in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D. M. Mattox, Ed, Boston: William Andrew Publishing, 2010, 1-24.
[21] W. R. Grove, "On the Electro-Chemical Polarity of Gases," Philosophical Transactions of the Royal Society of London, 142 (1852) 87-101.
[22] D. Depla, S. Mahieu and J. E. Greene, "Chapter 5 - Sputter Deposition Processes," in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, Ed, Boston: William Andrew Publishing, 2010, 253-296.
[23] Donald M. Mattox, "Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering)," in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D. M. Mattox, Ed, Boston: William Andrew Publishing, 2010, 237-286.
[24] Scott G. Walton and J. E. Greene, "Chapter 2 - Plasmas in Deposition Processes," in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, Ed, Boston: William Andrew Publishing, 2010, 32-92.
[25] Peter M. Martin, "Chapter 1 - Deposition Technologies: An Overview," in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, Ed, Boston: William Andrew Publishing, 2010, 1-31.
[26] http://marriott.tistory.com/97
[27] JA Venables, GDT Spiller and M Hanbucken, "Nucleation and Growth of Thin Films," Reports on Progress in Physics, 47 (1984) 399-459.
[28] J. E. Greene, "Chapter 12 - Thin Film Nucleation, Growth, and Microstructural Evolution: An Atomic Scale View," in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, Ed, Boston: William Andrew Publishing, 2010, 554-620.
[29] Donald M. Mattox, "Chapter 10 - Atomistic Film Growth and Some Growth-Related Film Properties," in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D. M. Mattox, Ed, Boston: William Andrew Publishing, 2010, 333-398.
[30] B.A. Movchan and A.V. Demchishin, "Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Oxide," The Physics of Metals and Metallography, 28 (1969) 83-90.
[31] John A. Thornton, "High Rate Thick Film Growth," Annyal Review of Materials Science, 7 (1977) 239-260.
[32] R. Messier, A. P. Giri and R. A.Roy, "Revised Structure Zone Model for Thin Film Physical Structure," Journal of Vacuum Science & Technology A, 2 (1984) 500-503.
[33] 陳仲宜, PVD 鍍膜技術在切削刀具應用之最新發展趨勢: 經濟部技術處產業技術知識服務 (ITIS) 計畫.
[34] Bruno Trindade, Albano Cavaleiro and Maria Teresa Vieira, "The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part II—Carbides," in Nanostructured Coatings, A. Cavaleiro and J. T. M. D. Hosson, Ed: Springer New York, 2006,
[35] G. Abadias, A. Michel, C. Tromas, et al., "Stress, Interfacial Effects and Mechanical Properties of Nanoscale Multilayered Coatings," Surface and Coatings Technology, 202 (2007) 844-853.
[36] J. Musil, "Hard Nanocomposite Coatings: Thermal Stability, Oxidation Resistance and Toughness," Surface & Coatings Technology, 207 (2012) 50-65.
[37] S. Veprek, R.F. Zhang, M.G.J. Veprek-Heijman, et al., "Superhard Nanocomposites: Origin of Hardness Enhancement, Properties and Applications," Surface & Coatings Technology, 204 (2010) 1898-1906.
[38] Ali Erdemir and Andrey A. Voevodin, "Chapter 14 - Nanocomposite Coatings for Severe Applications*," in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, Ed, Boston: William Andrew Publishing, 2010, 679-715.
[39] Jianliang Lin, John J. Moore, Brajendra Mishra, et al., "The Structure and Mechanical and Tribological Properties of TiBCN Nanocomposite Coatings," Acta Materialia, 58 (2010) 1554-1564.
[40] Philip C. Yashar and William D. Sproul, "Nanometer Scale Multilayered Hard Coatings," Vacuum, 55 (1999) 179-190.
[41] C. Engstro¨m, J. Birch, L. Hultman, et al., "Interdiffusion Studies of Single Crystal TiN/NbN Superlattice Thin Films," Journal of Vacuum Science & Technology A, 17 (1999) 2920-2927.
[42] Scott A. Barnett, Anita Madan, Ilwon Kim, et al., "Stability of Nanometer-Thick Layers in Hard Coatings," MRS BULLETIN, (2003) 169-172.
[43] U. Helmersson, S. Todorova, S. A. Barnett, et al., "Growth of single‐crystal TiN/VN strained‐layer superlattices with extremely high mechanical hardness," Journal of Applied Physics, 62 (1987) 481-484.
[44] S. Menezes and D. P. Anderson, "Wavelength-Property Correlation in Electrodeposited Ultrastructured Cu-Ni Multilayers " Journal of The Electrochemical Society, 137 (1990) 440-444.
[45] K. K. Shih and D. B. Dove, "Ti/Ti-N Hf/Hf-N and W/W-N Multilayer Films with High Mechanical Hardness," Applied Physics Letters, 61 (1992) 654-656.
[46] Xi Chu and Scott A. Barnett, "Model of Superlattice Yield Stress and Hardness Enhancements," Journal of Applied Physics, 77 (1995) 4403-4411.
[47] Jien-Wei Yeh, "Alloy Design Strategies and Future Trends in High-Entropy Alloys," JOM, 65 (2013) 1759-1771.
[48] B.S. Murty, J.W. Yeh and S.Ranganathan, High-Entropy Alloys. London: Elsevier, 2014.
[49] O. N. Senkov, J. M. Scott, S. V. Senkova, et al., "Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy," Journal of Alloys and Compounds, 509 (2011) 6043-6048.
[50] O.N. Senkov, G.B. Wilks, D.B. Miracle, et al., "Refractory high-entropy alloys," Intermetallics, 18 (2010) 1758-1765.
[51] K. Y. Tsai, M. H. Tsai and J. W. Yeh, "Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys," Acta Materialia, 61 (2013) 4887-4897.
[52] 賴思維, "A Study on Nitride Films of AlBCrSiTi High-Entropy alloy by Reactive DC Sputtering," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2006.
[53] 張慧紋, "A Study on Nitride Films of Al-Cr-Mo-Si-Ti High-Entropy alloy by Reactive DC puttering," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2005.
[54] 張境芳, "Al-Cr-Nb-Si-Ta 高熵氮化膜之開發研究," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2013.
[55] 陳韻如, "Effect of B content on mechanical properties and heat resistance of AlCrNbSiTiVBx nitride films," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2007.
[56] 蔡佳凌, "Study on High-entropy Nitride film of (Al, Cr, Nb, Si, B, C)100-xNx by DC Reactive Magnetron Sputtering," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2014.
[57]...http://www.dualsignal.com.tw/30913255112866623556magnetron-sputtering.html
[58] http://www.mcswiggen.com/TechNotes/WDSvsEDS.htm
[59] "Overview of Mechanical Testing Standards," Applications Bulletin, No. 18 (2002)
[60] http://bm3.unl.edu/hysitron-nanoindenter#details
[61] http://www.azom.com/article.aspx?ArticleID=4076
[62] Enori Gemelli, Alex Scariot and Nelson Heriberto Almeida Camargo, "Thermal Characterization of Commercially Pure Titanium for Dental Applications," Materials Research, 10 (2007) 241-346.
[63] Jong-Keuk Park and Young-Joon Baik, "Increase of Hardness and Oxidation Resistance of VN Coating by Nanoscale Multilayered Structurization with AlN," Materials Letters, 62 (2008) 2528-2530.
[64] S.A. Barnett and Anita Madan, "Hardness and Stability of Metal–Nitride Nanoscale Multilayers," Scripta Materialia, 50 (2004) 739-744.
[65] M. Shinn, L. Hultman and S.A. Barnett, "Growth, structure, and microhardness of epitaxial TiN/NbN superlattices," Journal of Materials Research, 4 (1992) 901-911.
[66] Alla D. Mah and Norma L. Gellert, "Heats of Formation of Niobium Nitride, Tantalum Nitride and Zirconium Nitride from Combustion Calorimetry," Journal of the American Chemical Society, 78 (1956) 3261-3263.
[67] http://webbook.nist.gov/chemistry/form-ser.html
[68] Y H Cheng, T Browne, B Heckerman, et al., "Influence of Si content on the structure and internal stress of the nanocomposite TiSiN coatings deposited by large area filtered arc deposition," Journal of physics D: applied physics, 42 (2009) 1-7.
[69] D. Mercs, P. Briois, V. Demange, et al., "Influence of the addition of silicon on the structure and properties of chromium nitride coatings deposited by reactive magnetron sputtering assisted by RF plasmas," Surface & Coatings Technology, 201 (2007) 6970-6976.
[70] C. S. Sandu, M. Benkahoul, R. Sanjinés, et al., "Model for the evolution of Nb–Si–N thin films as a function of Si content relating the nanostructure to electrical and mechanical properties," Surface and Coatings Technology, 201 (2006) 2897-2903.
[71] Karl-Heinz Müller, "Ion-beam-induced epitaxial vapor-phase growth: A molecular-dynamics study," Physical Review B, 35 (1987) 7906-7913.
[72] G. Håkansson, J. E. Sundgren, D. McIntyre, et al., "Microstructure and physical properties of polycrystalline metastable Ti0.5Al0.5N alloys grown by d.c. magnetron sputter deposition," Thin Solid Films, 153 (1987) 55-65.
[73] S. J. Bull, A. M. Jones and A. R. McCabe, "Residual stress in ion-assisted coatings," Surface and Coatings Technology, 54–55, Part 1 (1992) 173-179.
[74] H. Oettel and R. Wiedemann, "Residual stresses in PVD hard coatings," Surface and Coatings Technology, 76–77, Part 1 (1995) 265-273.
[75] G.C.A.M. Janssen, "Stress and strain in polycrystalline thin films," Thin Solid Films, 515 (2007) 6654-6664.
[76] Ali R. Massih and Rosa Jerlerud Pérez, "Thermodynamic evaluation of the Nb-O system," Quantum Technologies AB, (2006) 1-31.
[77] Yu-ping Feng, Li Zhang, Rong-xian Ke, et al., "Thermal stability and oxidation behavior of AlTiN, AlCrN and AlCrSiWN coatings," International Journal of Refractory Metals and Hard Materials, 43 (2014) 241-249.
[78] Valery Marinov, Manufacturing Technology: Abir Roy, 2014.
[79] Li Chen, Yong Du, Xiang Xiong, et al., "Improved properties of Ti-Al-N coating by multilayer structure," International Journal of Refractory Metals and Hard Materials, 29 (2011) 681-685.
[80] C. Subramanian and K. N. Strafford, "Review of Multicomponent and Multilayer Coatings for Tribological Applications," Wear, 165 (1993) 85-95.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *