帳號:guest(18.217.46.173)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾柏元
作者(外文):Tseng, Po Yuan
論文名稱(中文):製備高開關比及高遷移率之石墨烯/氧化鋅接面場效電晶體
論文名稱(外文):Fabrication of Graphene/Zinc Oxide Junction Field Effect Transistor with High On-off Ratio and High Mobility
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
口試委員(中文):林建宏
李紫原
口試委員(外文):Lin, Jarrn Horng
Lee, Chi Young
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031522
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:89
中文關鍵詞:石墨烯接面場效電晶體高開關比及高遷移率
外文關鍵詞:GrapheneJFETHigh on-off ratio and high mobility
相關次數:
  • 推薦推薦:0
  • 點閱點閱:58
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
石墨烯為一單層碳原子材料,具有特殊的光學與電學性質、優良的化學穩定性及高載子遷移率,這些獨特的性質,使石墨烯具備取代矽材料作為電子元件的潛力。本研究以化學氣相沉積系統於電解拋光銅箔上成長大面積的單層石墨烯,利用轉印技術,與原子層沉積所製備之氧化鋅薄膜形成石墨烯/氧化鋅接面場效電晶體。研究中使用拉曼光譜儀、光學顯微鏡探討化學氣相沉積法所成長的石墨烯及轉印至基板後的石墨烯之品質,並以紫外光-可見光光譜儀分析石墨烯的吸光率,及原子力顯微鏡量測單層石墨烯的厚度。另一方面,利用X光繞射儀、光激螢光光譜儀分析氧化鋅薄膜之基本物性,並探討不同原子層沉積溫度對氧化鋅薄膜的影響。在場效電晶體量測上,以多探針量測系統量測元件之電學性質,並探討不同成長溫度之氧化鋅對PN接面的影響。研究結果顯示,於電解拋光銅箔上成長之單層石墨烯,其厚度、吸光率與電洞(電子)遷移率分別為0.4-0.7 nm、3.35%、4638(5470) cm2/V∙s,而電洞及電子開關比分別為2.91與2.12。經由與氧化鋅薄膜複合型成PN接面後,最後所獲得之石墨烯/氧化鋅接面場效電晶體,其載子遷移率最高可達670 cm2/V∙s,開關比為2.87 × 105。
Graphene possesses excellent chemical stability, high carrier mobility, and unique optoelectrical properties at atomic level, which was considered as a promising material to replace Si in semiconductor industry. In this study, the chemical vapor deposition method was adopted to grow monolayer graphene on the electropolished Cu foil, followed by transferring the as-synthesized graphene to zinc oxide film, which was prepared by atomic layer deposition, forming graphene/zinc oxide junction field effect transistor. Graphene growth and transferring were characterized using Raman spectrum, optical microscopy; thickness and absorbance were measured using atomic force microscopy and UV-visable spectrometer, respectively. In other side, zinc oxide deposited at different temperature were also characterized using X-ray diffractometer and photoluminescence spectroscopy, investigating the effect of different growth temperature on zinc oxide. Electrical properties of the fabricated FETs were examined by a multi-probe system and the influences of irradiation of UV on electrical properties were also analyzed. The results indicate that the thickness, absorbance, and hole(electron) mobility of the graphene were 0.4-0.7 nm, 3.35%, and 4638(5470) cm2/V∙s, respectively. The current on-off ratio of hole and electron was 2.91 and 2.12, respectively. Graphene/zinc oxide junction field effect transistor was formed combining with graphene and zinc oxide film, showed high electron mobility of 670 cm2/V∙s and high current on-off ratio of 2.87 × 105.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1前言 1
1-2研究動機 1
第二章 文獻回顧 3
2-1石墨烯簡介 3
2-1-1石墨烯的晶體結構 3
2-1-2石墨烯的能帶結構 4
2-2石墨烯的製備方法 5
2-2-1機械剝離法 5
2-2-2碳化矽裂解法 6
2-2-3化學還原法 6
2-2-4化學氣相沉積法 7
2-3鑑定石墨烯層數之方法 10
2-3-1穿透式電子顯微鏡 10
2-3-2原子力顯微鏡 10
2-3-3光學顯微鏡 11
2-3-4拉曼光譜儀 11
2-4氧化鋅簡介 13
2-4-1氧化鋅的製備 14
2-4-2原子層沉積成長氧化鋅原理 14
2-5 PN接面 15
2-5-1整流特性 16
2-5-2光伏特性 17
2-5-3接面電晶體 17
第三章 實驗步驟與研究方法 35
3-1實驗步驟 35
3-1-1銅箔前處理 35
3-1-2石墨烯的製備 35
3-1-3轉印製程 36
3-1-4石墨烯電晶體元件的製備 37
3-1-5氧化鋅薄膜的製備 37
3-1-6氧化鋅/石墨烯接面之製備 38
3-1-7石墨烯/氧化鋅接面場效電晶體元件製備 38
3-1-8紫外光照射實驗 38
3-2 試片分析 39
3-2-1拉曼光譜儀 (Horiba Jobin Yvon HR 800 UV) 39
3-2-2光激螢光光譜儀 (Horiba Jobin Yvon HR 800 UV) 39
3-2-3原子力顯微鏡 (Bruker Dimension ICON) 39
3-2-4紫外光-可見光光譜儀 (Hitachi U3010) 39
3-2-5 X射線繞射儀 (SHIMADZU 6000) 40
3-2-6場發射掃描式電子顯微鏡 (Hitachi SU-8010) 40
3-2-7電流-電壓量測分析(Keithley 4200-SCS) 40
第四章 結果與討論 49
4-1於銅箔上成長單層石墨烯及其性質分析 49
4-1-1銅箔前處理 49
4-1-2單層石墨烯之性質分析 50
4-2氧化鋅薄膜之性質分析 52
4-3石墨烯/氧化鋅接面之電性分析 54
4-4場效電晶體之電性量測及分析 56
4-4-1石墨烯場效電晶體之電性 56
4-4-2石墨烯/氧化鋅接面場效電晶體元件之電性 57
第五章 結論 77
參考文獻 79
參考文獻
[1] J. Bardeen and W. H. Brattain, "The transistor, a semi-conductor triode," Physical Review, Vol. 74, pp. 230-231, 1948.
[2] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater, Vol. 6, pp. 183-191, 2007.
[3] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, Vol. 146, pp. 351-355, 2008.
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, Vol. 306, pp. 666-669, 2004.
[5] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene photonics and optoelectronics," Nature Photonics, Vol. 4, pp. 611-622, 2010.
[6] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, Vol. 324, pp. 1312-1314, 2009.
[7] M. Bokdam, P. A. Khomyakov, G. Brocks, Z. Zhong, and P. J. Kelly, "Electrostatic doping of graphene through ultrathin hexagonal boron nitride films," Nano Letters, Vol. 11, pp. 4631-4635, 2011.
[8] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, et al., "Direct observation of a widely tunable bandgap in bilayer graphene," Nature, Vol. 459, pp. 820-823, 2009.
[9] H. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, et al., "Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition," Small, Vol. 9, pp. 1316-1320, 2013.
[10] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, "Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties," Nano Letters, Vol. 9, pp. 1752-1758, 2009.
[11] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, "Doping graphene with metal contacts," Physical Review Letters, Vol. 101, p. 026803, 2008.
[12] M. I. Katsnelson and K. S. Novoselov, "Graphene: new bridge between condensed matter physics and quantum electrodynamics," Solid State Communications, Vol. 143, pp. 3-13, 2007.
[13] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, Vol. 81, pp. 109-162, 2009.
[14] P. R. Wallace, "The band theory of graphite," Physical Review, Vol. 71, pp. 622-634, 1947.
[15] D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, "Properties of graphene: a theoretical perspective," Advances in Physics, Vol. 59, pp. 261-482, 2010.
[16] B. Partoens and F. M. Peeters, "From graphene to graphite: electronic structure around the K point," Physical Review B, Vol. 74, 2006.
[17] A. d. H. Walt, B. Claire, W. Xiaosong, S. Mike, H. Yike, R. Ming, et al., "Epitaxial graphene electronic structure and transport," Journal of Physics D: Applied Physics, Vol. 43, p. 374007, 2010.
[18] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, Vol. 312, pp. 1191-1196, 2006.
[19] W. S. Hummers and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, Vol. 80, pp. 1339-1339, 1958.
[20] B. C. Brodie, "On the atomic weight of graphite," Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249-259, 1859.
[21] S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nat Nano, Vol. 4, pp. 217-224, 2009.
[22] H.-J. Shin, K. K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I.-S. Jung, et al., "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials, Vol. 19, pp. 1987-1992, 2009.
[23] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, Vol. 45, pp. 1558-1565, 2007.
[24] M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, et al., "Single sheet functionalized graphene by oxidation and thermal expansion of graphite," Chemistry of Materials, Vol. 19, pp. 4396-4404, 2007.
[25] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, et al., "Functionalized single graphene sheets derived from splitting graphite oxide," Journal of Physical Chemistry B, Vol. 110, pp. 8535-8539, 2006.
[26] S. Y. Chee, H. L. Poh, C. K. Chua, F. Sanek, Z. Sofer, and M. Pumera, "Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide," Physical Chemistry Chemical Physics, Vol. 14, pp. 12794-12799, 2012.
[27] A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, et al., "Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors," Carbon, Vol. 49, pp. 4204-4210, 2011.
[28] G. Kalita, K. Wakita, M. Umeno, Y. Hayashi, M. Tanemura, and Ieee, "Synthesis of continuous graphene on metal foil for flexible transparent electrode application," Proceedings of the 2013 Ieee 5th International Nanoelectronics Conference (Inec), pp. 281-284, 2013.
[29] C. Mattevi, H. Kim, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper," Journal of Materials Chemistry, Vol. 21, pp. 3324-3334, 2011.
[30] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, Vol. 93, 2008.
[31] P. Sutter, J. T. Sadowski, and E. Sutter, "Graphene on Pt(111): growth and substrate interaction," Physical Review B, Vol. 80, 2009.
[32] J. Wintterlin and M. L. Bocquet, "Graphene on metal surfaces," Surface Science, Vol. 603, pp. 1841-1852, 2009.
[33] Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, et al., "Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001)," Advanced Materials, Vol. 21, pp. 2777-+, 2009.
[34] J. Coraux, A. T. N'Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, et al., "Growth of graphene on Ir(111)," New Journal of Physics, Vol. 11, p. 023006, 2009.
[35] 劉書宏,「銅電鍍與電解拋光於銅鑲嵌金屬連導線應用之研究」,博士論文,國立交通大學,中華民國九十五年七月。
[36] Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith, et al., "Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure," Chemistry of Materials, Vol. 23, pp. 1441-1447, 2011.
[37] L.-W. Tsai and N.-H. Tai, "Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth," ACS Applied Materials & Interfaces, Vol. 6, pp. 10489-10496, 2014.
[38] O. Albrektsen, R. L. Eriksen, S. M. Novikov, D. Schall, M. Karl, S. I. Bozhevolnyi, et al., "High resolution imaging of few-layer graphene," Journal of Applied Physics, Vol. 111, p. 064305, 2012.
[39] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, "Raman scattering from high-frequency phonons in supported n-graphene layer films," Nano Letters, Vol. 6, pp. 2667-2673, 2006.
[40] F. Giannazzo, S. Sonde, V. Raineri, G. Patanè, G. Compagnini, F. Aliotta, et al., "Optical, morphological and spectro- scopic characterization of graphene on SiO2," Physica Status Solidi C: Current Topics in Solid State Physics, Vol. 7, pp. 1251-1255, 2010.
[41] P. Nemes-Incze, Z. Osvath, K. Kamaras, and L. P. Biro, "Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy," Carbon, Vol. 46, pp. 1435-1442, 2008.
[42] Á. Mechler, J. Kopniczky, J. Kokavecz, A. Hoel, C.-G. Granqvist, and P. Heszler, "Anomalies in nanostructure size measurements by AFM," Physical Review B, Vol. 72, p. 125407, 2005.
[43] P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, et al., "Making graphene visible," Applied Physics Letters, Vol. 91, 2007.
[44] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, "Perspectives on carbon nanotubes and graphene Raman spectroscopy," Nano Letters, Vol. 10, pp. 751-758, 2010.
[45] A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical Review B, Vol. 61, pp. 14095-14107, 2000.
[46] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, Vol. 473, pp. 51-87, 2009.
[47] Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, et al., "Raman studies of monolayer graphene: The substrate effect," Journal of Physical Chemistry C, Vol. 112, pp. 10637-10640, 2008.
[48] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, Vol. 143, pp. 47-57, 2007.
[49] A. C. Ferrari and D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene," Nature Nanotechnology, Vol. 8, pp. 235-246, 2013.
[50] J. C. M. A. C. Ferrari, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers," Physical Review Letters, Vol. 97, p. 187401, 2006.
[51] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, et al., "ZnO: growth, doping & processing," Materials Today, Vol. 7, pp. 34-40, 2004.
[52] A. Onodera and M. Takesada, Electronic Ferroelectricity in II-VI Semiconductor ZnO, 2012.
[53] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, et al., "Optically pumped lasing of ZnO at room temperature," Applied Physics Letters, Vol. 70, pp. 2230-2232, 1997.
[54] K. Sun, W. Wei, Y. Ding, Y. Jing, Z. L. Wang, and D. Wang, "Crystalline ZnO thin film by hydrothermal growth," Chemical Communications, Vol. 47, pp. 7776-7778, 2011.
[55] C.-L. Zhang, W.-N. Zhou, Y. Hang, Z. Lü, H.-D. Hou, Y.-B. Zuo, et al., "Hydrothermal growth and characterization of ZnO crystals," Journal of Crystal Growth, Vol. 310, pp. 1819-1822, 2008.
[56] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, et al., "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films," Applied Physics Letters, Vol. 72, pp. 3270-3272, 1998.
[57] Z. Li and W. Gao, "ZnO thin films with DC and RF reactive sputtering," Materials Letters, Vol. 58, pp. 1363-1370, 2004.
[58] J. Zhao, L. Hu, Z. Wang, Z. Wang, H. Zhang, Y. Zhao, et al., "Epitaxial growth of ZnO thin films on Si substrates by PLD technique," Journal of Crystal Growth, Vol. 280, pp. 455-461, 2005.
[59] Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, and H. Watanabe, "Hetero-epitaxial growth of ZnO thin films by atmospheric pressure CVD method," Journal of Crystal Growth, Vol. 221, pp. 431-434, 2000.
[60] L. Znaidi, "Sol–gel-deposited ZnO thin films: A review," Materials Science and Engineering: B, Vol. 174, pp. 18-30, 2010.
[61] W. Song, S. Y. Kwon, S. Myung, M. W. Jung, S. J. Kim, B. K. Min, et al., "High-mobility ambipolar ZnO-graphene hybrid thin film transistors," Scientific Reports, Vol. 4, 2014.
[62] J. Lim and C. Lee, "Effects of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition," Thin Solid Films, Vol. 515, pp. 3335-3338, 2007.
[63] A. Wójcik, M. Godlewski, E. Guziewicz, R. Minikayev, and W. Paszkowicz, "Controlling of preferential growth mode of ZnO thin films grown by atomic layer deposition," Journal of Crystal Growth, Vol. 310, pp. 284-289, 2008.
[64] M. Ritala, M. Leskelä, J.-P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, "Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition," Chemical Vapor Deposition, Vol. 5, pp. 7-9, 1999.
[65] M. Leskelä and M. Ritala, "Atomic layer deposition chemistry: recent developments and future challenges," Angewandte Chemie International Edition, Vol. 42, pp. 5548-5554, 2003.
[66] J. I. Pankove, Optical Processes in Semiconductors New York, Dover, 1976.
[67] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, et al., "Photocurrent generation with two-dimensional van der Waals semiconductors," Chemical Society Reviews, Vol. 44, pp. 3691-3718, 2015.
[68] 施敏、伍國珏,半導體元件物理學,新竹:國立交通大學出版社,民國88年。
[69] C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, "A comparative analysis of deep level emission in ZnO layers deposited by various methods," Journal of Applied Physics, Vol. 105, p. 013502, 2009.
[70] B. N. Szafranek, D. Schall, M. Otto, D. Neumaier, and H. Kurz, "High on/off ratios in bilayer graphene field effect transistors realized by surface dopants," Nano Letters, Vol. 11, pp. 2640-2643, 2011.
[71] Z. Zhang, H. Xu, H. Zhong, and L.-M. Peng, "Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements," Applied Physics Letters, Vol. 101, p. 213103, 2012.
[72] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, et al., "Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric," Applied Physics Letters, Vol. 94, p. 062107, 2009.
[73] B. J. Kim, H. Jang, S.-K. Lee, B. H. Hong, J.-H. Ahn, and J. H. Cho, "High-performance flexible graphene field effect transistors with ion gel gate dielectrics," Nano Letters, Vol. 10, pp. 3464-3466, 2010.
[74] F. Chen, J. Xia, and N. Tao, "Ionic screening of charged-impurity scattering in graphene," Nano Letters, Vol. 9, pp. 1621-1625, 2009.
[75] F. Chen, J. Xia, D. K. Ferry, and N. Tao, "Dielectric screening enhanced performance in graphene FET," Nano Letters, Vol. 9, pp. 2571-2574, 2009.
[76] F. Schwierz, "Graphene transistors," Nat Nano, Vol. 5, pp. 487-496, 2010.
[77] Y.-H. Wu, P.-Y. Tseng, P.-Y. Hsieh, H.-T. Chou, and N.-H. Tai, "High mobility of graphene-based flexible transparent field effect transistors doped with TiO2 and nitrogen-doped TiO2," Acs Applied Materials & Interfaces, Vol. 7, pp. 9453-9461, 2015.
[78] C.-C. Lu, Y.-C. Lin, C.-H. Yeh, J.-C. Huang, and P.-W. Chiu, "High mobility flexible graphene field-effect transistors with self-healing gate dielectrics," Acs Nano, Vol. 6, pp. 4469-4474, 2012.
[79] D.-m. Sun, M. Y. Timmermans, Y. Tian, A. G. Nasibulin, E. I. Kauppinen, S. Kishimoto, et al., "Flexible high-performance carbon nanotube integrated circuits," Nature Nanotechnology, Vol. 6, pp. 156-161, 2011.
[80] M. Ha, Y. Xia, A. A. Green, W. Zhang, M. J. Renn, C. H. Kim, et al., "Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks," Acs Nano, Vol. 4, pp. 4388-4395, 2010.
[81] Q. Cao, H.-s. Kim, N. Pimparkar, J. P. Kulkarni, C. Wang, M. Shim, et al., "Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates," Nature, Vol. 454, pp. 495-U4, 2008.
[82] W.-S. Choi, "ALD-grown ZnO thin-film transistor with a polymeric dielectric," Journal of the Korean Physical Society, Vol. 54, pp. 678-681, 2009.
[83] S. Kwon, S. Bang, S. Lee, S. Jeon, W. Jeong, H. Kim, et al., "Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures," Semiconductor Science and Technology, Vol. 24, 2009.
[84] C.-s. Li, Y.-n. Li, Y.-l. Wu, B.-S. Ong, and R.-O. Loutfy, "Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors," Journal of Materials Chemistry, Vol. 19, pp. 1626-1634, 2009.
[85] M. Mativenga, S. An, S. Lee, J. Um, D. Geng, R. K. Mruthyunjaya, et al., "Intrinsic channel mobility of amorphous, In-Ga-Zn-O thin-film transistors by a gated four-probe method," Ieee Transactions on Electron Devices, Vol. 61, pp. 2106-2112, 2014.
[86] J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, et al., "High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation," Applied Physics Letters, Vol. 93, 2008.
[87] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.-S. Park, et al., "High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper," Applied Physics Letters, Vol. 90, 2007.
[88] P.-Y. Hsieh, C.-Y. Lee, and N.-H. Tai, "A high carrier-mobility crystalline silicon film directly grown on polyimide using SiCl4/H-2 microwave plasma for flexible thin film transistors," Journal of Materials Chemistry C, Vol. 3, pp. 7513-7522, 2015.
[89] A. Pecora, L. Maiolo, M. Cuscuna, D. Simeone, A. Minotti, L. Mariucci, et al., "Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic," Solid-State Electronics, Vol. 52, pp. 348-352, 2008.
[90] L. Han, K. Song, P. Mandlik, and S. Wagner, "Ultraflexible amorphous silicon transistors made with a resilient insulator," Applied Physics Letters, Vol. 96, 2010.
[91] L. Han, P. Mandlik, K. H. Cherenack, and S. Wagner, "Amorphous silicon thin-film transistors with field-effect mobilities of 2 cm(2)/V s for electrons and 0.1 cm(2)/V s for holes," Applied Physics Letters, Vol. 94, 2009.
[92] H. Yifei, B. Hekmatshoar, S. Wagner, and J. C. Sturm, "Top-gate amorphous silicon TFT with self-aligned silicide source/drain and high mobility," Electron Device Letters, IEEE, Vol. 29, pp. 737-739, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *