帳號:guest(13.59.84.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李邦璿
作者(外文):Lee, Pang Hsuan
論文名稱(中文):以冷凍鑄造法及矽藻土合成具多階層孔洞結構之仿生複合材料
論文名稱(外文):Synthesis of Hierarchically Porous Structured Bio-Inspired Composites by Diatomites and Freeze Casting
指導教授(中文):陳柏宇
指導教授(外文):Chen, Po Yu
口試委員(中文):張志祥
蔡哲瑋
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031513
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:114
中文關鍵詞:矽藻土冷凍鑄造法仿生材料多階層孔洞結構
外文關鍵詞:DiatomiteFreeze castingBio-inspired compositesHierarchical porous structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:544
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
孔洞材料具有著質量輕、密度低及高孔隙率等優點,目前常廣泛應用於各種不同領域。自然界的多孔材料、如羽毛、鳥喙及骨骼等,皆具有多階層孔洞結構之輕量化設計。其結構由不同尺度之孔洞有序排列而構成,搭配蛋白質等具高韌性之天然有機物,進而達到高孔隙率、輕量化、高強度、高韌性等特性。
本研究主要目標為觀察骨頭、鳥羽等天然多階層孔洞結構,以其做為啟發與設計靈感,以具有奈米孔洞之矽藻土(Fossil Shell Flour)為原料,利用冷凍鑄造法(Freeze Casting)合成多孔材料,再加入高分子合成強化 (聚乙烯醇(PVA)),製造出多功能、質量輕且具有多階層結構的仿生孔洞複合材料。掃描式電子顯微鏡(SEM)觀察證實利用上述冷凍鑄造技術與矽藻土陶瓷原料,可確實且有再現性地製造出具有多階層孔洞結構之輕量化陶瓷材料。而在機械性質方面,利用壓縮應力測試法測量並與同濃度之二氧化矽實心粉末鑄造之成品比較,發現兩者之最大壓縮應力與彈性係數相近,矽藻土成品則具有較佳的破裂韌性。此外,添加高分子強化,能增強陶瓷機多孔材料之機械性質,有效地提升強度與韌性。藉由調控不同參數,如降溫速率、漿料濃度、燒結溫度等,也可控制並改良其結構與機械性質。本研究亦量測仿生多孔複合材料之吸水、保水特性及熱阻抗,期望未來能以此多階層孔洞材料做為基礎,搭配各種合成技術,應用於各領域。
Porous composites are widely applied in various fields due to their lightweight, high surface/volume ratio and energy absorbing ability. Natural porous composites, such as bird feathers, beaks and bones, possess lightweight and superior mechanical properties due to their anisotropic, hierarchically porous structure. In this study, we synthesized ultra-lightweight, multifunctional scaffolds mimicking natural porous composites by the freeze casting technique utilizing diatomaceous earth (DE) as raw materials. By controlling the cooling rate, sintering condition and the formation of ice dendritic structures, scaffolds with aligned micro-scaled channels and nano-scaled pores were synthesized. Structural characterization was carried out by SEM and the compositional analysis was identified by XRD. Mechanical properties of DE scaffolds were measured by compressive tests and compared with silica scaffolds. Results showed that two scaffolds had similar ultimate compressive stress and elastic modulus yet DE scaffolds have better toughness and deformability. DE scaffolds were further infiltrated by polymer (PVA) to improve their mechanical properties. The water adsorption, water retention and thermal conductivity of DE scaffolds were also evaluated. The bio-inspired, hierarchically porous scaffolds can be further modified and applied in different fields.
List of Tables--v

List of Figures--vi

Chapter 1. Introduction--1

1.1 Background--1
1.2 Motivations and Goals--4

Chapter 2. Literature Review--7

2.1 Avian Feather--7
2.1.1 Morphology and Structure--7
2.1.2 Hierarchical Porous Structure--9

2.2 Bone--10
2.2.1 Hierarchical Structure--10
2.2.2 Mechanical Properties--12
2.2.3 Toughening Mechanisms--14

2.3 Diatomaceous Earth--15
2.3.1 Introduction--15
2.3.2 Classification and Morphology--16
2.3.3 Characteristics and Potential Applications--18

2.4 Freeze Casting--19
2.4.1 Theories of Freeze Casting--20
2.4.2 Experimental Procedures--23
2.4.3 Recent Developments of Freeze Casting--25

2.5 Fabrication of Porous Materials--27
2.5.1 Replica Technique--27
2.5.2 Sacrificial Template Method--28
2.5.3 Direct Foaming Methods--29

Chapter 3. Experimental Methods--45

3.1 Synthesis of Scaffolds--45
3.1.1 D.E. Scaffold Preparation--45
3.1.2 Polymer Infiltration--47
3.1.3 Purified D.E. & SiO2 Scaffold Preparation--48

3.2 Characterizations and Measurements--49
3.2.1 Structural Characterization and Elemental Analysis--49
3.2.2 Compressive Mechanical Testing--50
3.2.3 Water Absorption--50
3.2.4 Thermal Conductivity Measurement--51

Chapter 4. Results and Discussion--54

4.1 Freeze-Casted D.E. Scaffolds--54
4.1.1 Optimization--54
4.1.2 Effect of Solid Loading and Sintering Temperature--58

4.2 Comparisons in Mechanical Properties--63
4.2.1 Comparison with Silica Scaffolds--63
4.2.2 Comparison with Purified D.E. Scaffolds--64

4.3 Polymer Infiltration--66
4.3. Mechanical Properties--66

4.4 Functionality Measurement--67
4.4.1 Water Absorption--67
4.4.2 Water Retention--68
4.4.3 Thermal Conductivity Analysis--69

Chapter 5.--Conclusions--104

REFERENCES--106
1. Rosi, N.L., et al., Hydrogen storage in microporous metal-organic frameworks. Science, 2003. 300(5622): p. 1127-9.
2. Soler-illia, G.J.D., et al., Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews, 2002. 102(11): p. 4093-4138.
3. Wilson, S.T., et al., ALUMINOPHOSPHATE MOLECULAR-SIEVES - A NEW CLASS OF MICROPOROUS CRYSTALLINE INORGANIC SOLIDS. Journal of the American Chemical Society, 1982. 104(4): p. 1146-1147.
4. Kresge, C.T., et al., ORDERED MESOPOROUS MOLECULAR-SIEVES SYNTHESIZED BY A LIQUID-CRYSTAL TEMPLATE MECHANISM. Nature, 1992. 359(6397): p. 710-712.
5. Ying, J.Y., C.P. Mehnert, and M.S. Wong, Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte Chemie-International Edition, 1999. 38(1-2): p. 56-77.
6. Imhof, A. and D.J. Pine, Ordered macroporous materials by emulsion templating. Nature, 1997. 389(6654): p. 948-951.
7. Studart, A.R., et al., Processing routes to macroporous ceramics: A review. Journal of the American Ceramic Society, 2006. 89(6): p. 1771-1789.
8. Laurie, J., et al., COLLOIDAL SUSPENSIONS FOR THE PREPARATION OF CERAMICS BY A FREEZE CASTING ROUTE. Journal of Non-Crystalline Solids, 1992. 147: p. 320-325.
9. Wikipedia. Specific strength. Available from: http://en.wikipedia.org/wiki/Specific_strength.
10. Meyers, M.A., et al., Biological materials: Structure and mechanical properties. Progress in Materials Science, 2008. 53(1): p. 1-206.
11. Meyers, M.A., et al., Biological materials: A materials science approach. Journal of the Mechanical Behavior of Biomedical Materials, 2011. 4(5): p. 626-657.
12. Chen, P.Y. and J. McKittrick, Compressive mechanical properties of demineralized and deproteinized cancellous bone. Journal of the Mechanical Behavior of Biomedical Materials, 2011. 4(7): p. 961-973.
13. Seki, Y., M.S. Schneider, and M.A. Meyers, Structure and mechanical behavior of a toucan beak. Acta Materialia, 2005. 53(20): p. 5281-5296.
14. Weiner, S. and H.D. Wagner, The material bone: Structure mechanical function relations. Annual Review of Materials Science, 1998. 28: p. 271-298.
15. McKittrick, J., et al., Energy absorbent natural materials and bioinspired design strategies: A review. Materials Science & Engineering C-Materials for Biological Applications, 2010. 30(3): p. 331-342.
16. Deville, S., Freeze-casting of porous ceramics: A review of current achievements and issues. Advanced Engineering Materials, 2008. 10(3): p. 155-169.
17. Wegst, U.G.K., et al., Biomaterials by freeze casting. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2010. 368(1917): p. 2099-2121.
18. Deville, S., E. Saiz, and A.P. Tomsia, Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(32): p. 5480-5489.
19. Mann, D.G. and S.J.M. Droop, Biodiversity, biogeography and conservation of diatoms. Hydrobiologia, 1996. 336(1-3): p. 19-32.
20. Jonathan English, M.P. Aulacoseira lirata. 2011; Available from: http://westerndiatoms.colorado.edu/taxa/species/aulacoseira_lirata.
21. Inspiration, G.M., GRANTA CES 2009 EDUPACK. 2009.
22. Zhang, F.C. and Z.H. Zhou, A primitive enantiornithine bird and the origin of feathers. Science, 2000. 290(5498): p. 1955-1959.
23. Galvan, I., Feather microstructure predicts size and colour intensity of a melanin-based plumage signal. Journal of Avian Biology, 2011. 42(6): p. 473-479.
24. Liu, Z.Q., et al., Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder - The peacock's tail coverts shaft and its components. Acta Biomaterialia, 2015. 17: p. 137-151.
25. Bonser, R.H.C., The mechanical performance of medullary foam from feathers. Journal of Materials Science Letters, 2001. 20(10): p. 941-942.
26. Bodde, S.G., M.A. Meyers, and J. McKittrick, Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco). Journal of the Mechanical Behavior of Biomedical Materials, 2011. 4(5): p. 723-732.
27. McKittrick, J., et al., The Structure, Functions, and Mechanical Properties of Keratin. Jom, 2012. 64(4): p. 449-468.
28. Purslow, P.P. and J.F.V. Vincent, MECHANICAL-PROPERTIES OF PRIMARY FEATHERS FROM PIGEON. Journal of Experimental Biology, 1978. 72(FEB): p. 251-260.
29. Ritchie, R.O., The conflicts between strength and toughness. Nature Materials, 2011. 10(11): p. 817-822.
30. Novitskaya, E., et al., Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomaterialia, 2011. 7(8): p. 3170-3177.
31. Brown, T.D. and A.B. Ferguson, MECHANICAL PROPERTY DISTRIBUTIONS IN THE CANCELLOUS BONE OF THE HUMAN PROXIMAL FEMUR. Acta Orthopaedica Scandinavica, 1980. 51(3): p. 429-437.
32. Reilly, D.T. and A.H. Burstein, REVIEW ARTICLE - MECHANICAL-PROPERTIES OF CORTICAL BONE. Journal of Bone and Joint Surgery-American Volume, 1974. A 56(5): p. 1001-1022.
33. Maass, H., Mechanical interference of bone development. Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medicin, 1901. 103(2): p. 185-208.
34. Reilly, D.T., A.H. Burstein, and V.H. Frankel, ELASTIC-MODULUS FOR BONE. Journal of Biomechanics, 1974. 7(3): p. 271-&.
35. Hasegawa, K., C.H. Turner, and D.B. Burr, CONTRIBUTION OF COLLAGEN AND MINERAL TO THE ELASTIC-ANISOTROPY OF BONE. Calcified Tissue International, 1994. 55(5): p. 381-386.
36. Skedros, J.G., et al., Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: Results from acoustic velocity measurements in deer calcanei. Bone, 2006. 39(1): p. 143-151.
37. Iyo, T., et al., Anisotropic viscoelastic properties of cortical bone. Journal of Biomechanics, 2004. 37(9): p. 1433-1437.
38. Launey, M.E., M.J. Buehler, and R.O. Ritchie, On the Mechanistic Origins of Toughness in Bone, in Annual Review of Materials Research, Vol 40, D.R. Clarke, M. Ruhle, and F. Zok, Editors. 2010. p. 25-53.
39. Currey, J.D., Biocomposites: Micromechanics of biological hard tissues. Current Opinion in Solid State & Materials Science, 1996. 1(3): p. 440-445.
40. Ritchie, R.O., Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fracture, 1999. 100(1): p. 55-83.
41. Vassileva, P.S., et al., Bulgarian natural diatomites: modification and characterization. Chemical Papers, 2013. 67(3): p. 342-349.
42. Yang, Y.X., R.S. Chen, and A.B. Dai, A study on structure of local diatomites. Acta Chimica Sinica, 1996. 54(1): p. 57-64.
43. Quarles, W. DIATOMACEOUS EARTH FOR PEST CONTROL. 1992; Available from: http://howtousediatomaceousearth.com/wp-content/uploads/2010/12/The-IPM-Practitioner.pdf.
44. Checkoway, H., et al., Dose-response associations of silica with nonmalignant respiratory disease and lung cancer mortality in the diatomaceous earth industry. American Journal of Epidemiology, 1997. 145(8): p. 680-688.
45. Kristiansen, J., Biogeography of Freshwater Algae. 2013: Springer Science & Business Media.
46. Hendey, N.I., An introductory account of the small algae of British coastal waters Part V. Bacillariophyceae (diatoms.) (Fishery Investigations Series IV. An introductory account of the small algae of British coastal waters Part V. Bacillariophyceae. 1964. xxii+317p. Illus.-xxii+317p. Illus.
47. Mann, D.G., THE SPECIES CONCEPT IN DIATOMS - EVIDENCE FOR MORPHOLOGICALLY DISTINCT, SYMPATRIC GAMODEMES IN 4 EPIPELIC SPECIES. Plant Systematics and Evolution, 1989. 164(1-4): p. 215-237.
48. Ha, J.-H., E. Oh, and I.-H. Song, The fabrication and characterization of sintered diatomite for potential microfiltration applications. Ceramics International, 2013. 39(7): p. 7641-7648.
49. Sheng, G., H. Dong, and Y. Li, Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters. Journal of Environmental Radioactivity, 2012. 113: p. 108-115.
50. Hadjar, H., et al., Elaboration and characterisation of new mesoporous materials from diatomite and charcoal. Microporous and Mesoporous Materials, 2008. 107(3): p. 219-226.
51. Zhang, H.F., et al., Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005. 4(10): p. 787-793.
52. Korber, C., et al., INTERACTION OF PARTICLES AND A MOVING ICE-LIQUID INTERFACE. Journal of Crystal Growth, 1985. 72(3): p. 649-662.
53. Asthana, R. and S.N. Tewari, THE ENGULFMENT OF FOREIGN PARTICLES BY A FREEZING INTERFACE. Journal of Materials Science, 1993. 28(20): p. 5414-5425.
54. Uhlmann, D.R., B. Chalmers, and K.A. Jackson, INTERACTION BETWEEN PARTICLES + SOLID-LIQUID INTERFACE. Journal of Applied Physics, 1964. 35(10): p. 2986-&.
55. Bolling, G.F. and J. Cissé, A theory for the interaction of particles with a solidifying front. Journal of Crystal Growth, 1971. 10(1): p. 56-66.
56. Stefanescu, D.M., et al., Behavior of ceramic particles at the solid- liquid metal interface in metal matrix composites. Metallurgical Transactions A, 1988. 19(11): p. 2847-2855.
57. Maxwell, W.A., A.C. Francisco, and R.S. Gurnick, Preliminary investigation of the "freeze-casting" method for forming refractory powders. 1954, Washington, DC: National Advisory Committee for Aeronautics.
58. Schoof, H., et al., Control of pore structure and size in freeze-dried collagen sponges. Journal of Biomedical Materials Research, 2001. 58(4): p. 352-357.
59. Blindow, S., et al., Hydroxyapatite/SiO2 Composites via Freeze Casting for Bone Tissue Engineering. Advanced Engineering Materials, 2009. 11(11): p. 875-884.
60. Porter, M.M., J. McKittrick, and M.A. Meyers, Biomimetic Materials by Freeze Casting. Jom, 2013. 65(6): p. 720-727.
61. Chino, Y. and D.C. Dunand, Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Materialia, 2008. 56(1): p. 105-113.
62. Driscoll, D., A.J. Weisenstein, and S.W. Sofie, Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates. Materials Letters, 2011. 65(23-24): p. 3433-3435.
63. Yook, S.-W., et al., Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries. Materials Letters, 2008. 62(30): p. 4506-4508.
64. Tang, Y.F., et al., Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceramics International, 2013. 39(8): p. 9703-9707.
65. Yook, S.W., et al., Reverse freeze casting: A new method for fabricating highly porous titanium scaffolds, with aligned large pores. Acta Biomaterialia, 2012. 8(6): p. 2401-2410.
66. Porter, M.M., et al., Magnetic freeze casting inspired by nature. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2012. 556: p. 741-750.
67. Ojuva, A., et al., Mechanical performance and CO2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 2015. 35(9): p. 2607-2618.
68. da Silva, L.L. and F. Galembeck, Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 2015. 3(14): p. 7263-7272.
69. Zhu, X.W., et al., Improvement in the strut thickness of reticulated porous ceramics. Journal of the American Ceramic Society, 2001. 84(7): p. 1654-1656.
70. Lange, F.F. and K.T. Miller, OPEN-CELL, LOW-DENSITY CERAMICS FABRICATED FROM RETICULATED POLYMER SUBSTRATES. Advanced Ceramic Materials, 1987. 2(4): p. 827-831.
71. White, R.A., E.W. White, and J.N. Weber, REPLAMINEFORM - NEW PROCESS FOR PREPARING POROUS CERAMIC, METAL, AND POLYMER PROSTHETIC MATERIALS. Science, 1972. 176(4037): p. 922-&.
72. Ota, T., et al., Porous titania ceramic prepared by mimicking silicified wood. Journal of the American Ceramic Society, 2000. 83(6): p. 1521-1523.
73. Fitzgerald, T.J., V.J. Michaud, and A. Mortensen, PROCESSING OF MICROCELLULAR SIC FOAMS .2. CERAMIC FOAM PRODUCTION. Journal of Materials Science, 1995. 30(4): p. 1037-1045.
74. Wang, H., et al., Fabrication of porous SiC ceramics with special morphologies by sacrificing template method. Journal of Porous Materials, 2004. 11(4): p. 265-271.
75. Djuve, J., R.J. Pugh, and J. Sjoblom, Foaming and dynamic surface tension of aqueous polymer/surfactants solutions 1: ethyl(hydroxyethyl) cellulose and sodium dodecyl sulphate. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2001. 186(3): p. 189-202.
76. Britannica, E. Feather. Available from: http://global.britannica.com/EBchecked/topic/52644/barb.
77. Martínez-Hernández, A.L. and C. Velasco-Santos, KERATIN FIBERS FROM CHICKEN FEATHERS: STRUCTURE AND ADVANCES IN POLYMER COMPOSITES.
78. Carlo, H.L., et al., Analysis of Filler Particle Levels and Sizes in Dental Alginates. Materials Research-Ibero-American Journal of Materials, 2010. 13(2): p. 261-264.
79. Gaddis, C.S. and K.H. Sandhage, Freestanding microscale 3D polymeric structures with biologically-derived shapes and nanoscale features. Journal of Materials Research, 2004. 19(9): p. 2541-2545.
80. Cassie, V., Marine Plankton Diatoms. Tuatara, 1959. 7(3).
81. Potapova, M. Hippodonta capitata. 2011; Available from: http://westerndiatoms.colorado.edu/taxa/species/hippodonta_capitata.
82. Kae-Long Lin, J.-Y.L., Water Retention Characteristic of Porous Ceramics Produced from Waste Diatomite and Waste Fiber Glass 2012.
83. Kumeria, T., et al., Graphene oxide decorated diatom silica particles as new nano-hybrids: towards smart natural drug microcarriers. Journal of Materials Chemistry B, 2013. 1(45): p. 6302-6311.
84. Yang Yu, I.R.N., Jonas Addai-Mensah, Dusan Losi, Diatomaceous Earth: a route for large scale preparation of advanced nanoscale materials with unique 3-D morphologies in AINSE Conference on Nuclear and Complementary Techniques of Analysis (16th : 2009 ). 2009, AINSE: Sydney, New South Wales.
85. Lorna J. Gibson, M.F.A., Cellular Solids: Structure and Properties-Second edition. The mechanics of foaams: basic results. 1999.
86. Hodge, A.M., et al., Scaling equation for yield strength of nanoporous open-cell foams. Acta Materialia, 2007. 55(4): p. 1343-1349.
87. Ashby, M.F., The properties of foams and lattices. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2006. 364(1838): p. 15-30.
88. Al-Fawzan, M.A., Methods for estimating the parameters of the Weibull distribution. 2000.
89. Faber, K.T. and A.G. Evans, CRACK DEFLECTION PROCESSES .1. THEORY. Acta Metallurgica, 1983. 31(4): p. 565-576.
90. Perma-Guard, I. Certificate+of+Analysis+July+2014. 2014; Available from: file:///C:/Users/User/Downloads/Certificate+of+Analysis+July+2014.pdf.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以冷凍鑄造及高分子聚合法合成多功能具多階層孔洞之矽藻土基複合材料
2. 以冷凍鑄造法及矽藻土製備水下超疏油之多孔薄片應用於高效率油水分離
3. 以化學氣相沉積法增強陶瓷支架之機械性質
4. 鱷魚骨板之啟發:防禦性生物複合材料之多尺度結構分析及機械性質研究
5. 烏賊骨板之結構與機械性質設計研究
6. 鮑魚珍珠層之仿生啟發: 以濺鍍與脈衝雷射蒸鍍複合技術合成氧化鋯/聚醯亞胺多層膜之微結構分析與機械性質研究
7. 兩種水棲昆蟲之吸附結構與機制研究:以石蛉幼蟲與網蚊幼蟲為啟發
8. 甲殼類外殼之仿生啟發:以濺鍍與脈衝雷射蒸鍍複合系統合成氧化鋯與氧化鈦/聚亞醯胺多層鍍膜之研究
9. 鯊魚牙齒之多尺度結構觀察與機械性質研究
10. 以扶桑及多孔植物為模板- 凝膠溶膠法合成TiO2及CaCO3 之研究
11. Inspirations from the Peristome of Nepenthes: Microstructural Characterization and Wettability Measurement of Multifunctional Surfaces Synthesized by Bio-replication and Surface Modification Techniques
12. Multi-scale Structural Characterization and Attachment Mechanisms of the Hillstream River Loach (Sinogastromyzon puliensis)
13. Multi-scale Structural Characterization and Mechanical Evaluation of Protective Bio-composites: Inspirations from Cobra Snake and Chinese Striped-neck Turtle Eggshells
14. 以魚鱗為原料合成氫氧基磷灰石多孔材料應用於生醫領域及重金屬吸附功能之研究
15. 以大氣電漿合成仿生金屬氧化物應用於自潔與油水分離
 
* *