|
1. Rosi, N.L., et al., Hydrogen storage in microporous metal-organic frameworks. Science, 2003. 300(5622): p. 1127-9. 2. Soler-illia, G.J.D., et al., Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews, 2002. 102(11): p. 4093-4138. 3. Wilson, S.T., et al., ALUMINOPHOSPHATE MOLECULAR-SIEVES - A NEW CLASS OF MICROPOROUS CRYSTALLINE INORGANIC SOLIDS. Journal of the American Chemical Society, 1982. 104(4): p. 1146-1147. 4. Kresge, C.T., et al., ORDERED MESOPOROUS MOLECULAR-SIEVES SYNTHESIZED BY A LIQUID-CRYSTAL TEMPLATE MECHANISM. Nature, 1992. 359(6397): p. 710-712. 5. Ying, J.Y., C.P. Mehnert, and M.S. Wong, Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte Chemie-International Edition, 1999. 38(1-2): p. 56-77. 6. Imhof, A. and D.J. Pine, Ordered macroporous materials by emulsion templating. Nature, 1997. 389(6654): p. 948-951. 7. Studart, A.R., et al., Processing routes to macroporous ceramics: A review. Journal of the American Ceramic Society, 2006. 89(6): p. 1771-1789. 8. Laurie, J., et al., COLLOIDAL SUSPENSIONS FOR THE PREPARATION OF CERAMICS BY A FREEZE CASTING ROUTE. Journal of Non-Crystalline Solids, 1992. 147: p. 320-325. 9. Wikipedia. Specific strength. Available from: http://en.wikipedia.org/wiki/Specific_strength. 10. Meyers, M.A., et al., Biological materials: Structure and mechanical properties. Progress in Materials Science, 2008. 53(1): p. 1-206. 11. Meyers, M.A., et al., Biological materials: A materials science approach. Journal of the Mechanical Behavior of Biomedical Materials, 2011. 4(5): p. 626-657. 12. Chen, P.Y. and J. McKittrick, Compressive mechanical properties of demineralized and deproteinized cancellous bone. Journal of the Mechanical Behavior of Biomedical Materials, 2011. 4(7): p. 961-973. 13. Seki, Y., M.S. Schneider, and M.A. Meyers, Structure and mechanical behavior of a toucan beak. Acta Materialia, 2005. 53(20): p. 5281-5296. 14. Weiner, S. and H.D. Wagner, The material bone: Structure mechanical function relations. Annual Review of Materials Science, 1998. 28: p. 271-298. 15. McKittrick, J., et al., Energy absorbent natural materials and bioinspired design strategies: A review. Materials Science & Engineering C-Materials for Biological Applications, 2010. 30(3): p. 331-342. 16. Deville, S., Freeze-casting of porous ceramics: A review of current achievements and issues. Advanced Engineering Materials, 2008. 10(3): p. 155-169. 17. Wegst, U.G.K., et al., Biomaterials by freeze casting. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2010. 368(1917): p. 2099-2121. 18. Deville, S., E. Saiz, and A.P. Tomsia, Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(32): p. 5480-5489. 19. Mann, D.G. and S.J.M. Droop, Biodiversity, biogeography and conservation of diatoms. Hydrobiologia, 1996. 336(1-3): p. 19-32. 20. Jonathan English, M.P. Aulacoseira lirata. 2011; Available from: http://westerndiatoms.colorado.edu/taxa/species/aulacoseira_lirata. 21. Inspiration, G.M., GRANTA CES 2009 EDUPACK. 2009. 22. Zhang, F.C. and Z.H. Zhou, A primitive enantiornithine bird and the origin of feathers. Science, 2000. 290(5498): p. 1955-1959. 23. Galvan, I., Feather microstructure predicts size and colour intensity of a melanin-based plumage signal. Journal of Avian Biology, 2011. 42(6): p. 473-479. 24. Liu, Z.Q., et al., Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder - The peacock's tail coverts shaft and its components. Acta Biomaterialia, 2015. 17: p. 137-151. 25. Bonser, R.H.C., The mechanical performance of medullary foam from feathers. Journal of Materials Science Letters, 2001. 20(10): p. 941-942. 26. Bodde, S.G., M.A. Meyers, and J. McKittrick, Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco). Journal of the Mechanical Behavior of Biomedical Materials, 2011. 4(5): p. 723-732. 27. McKittrick, J., et al., The Structure, Functions, and Mechanical Properties of Keratin. Jom, 2012. 64(4): p. 449-468. 28. Purslow, P.P. and J.F.V. Vincent, MECHANICAL-PROPERTIES OF PRIMARY FEATHERS FROM PIGEON. Journal of Experimental Biology, 1978. 72(FEB): p. 251-260. 29. Ritchie, R.O., The conflicts between strength and toughness. Nature Materials, 2011. 10(11): p. 817-822. 30. Novitskaya, E., et al., Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomaterialia, 2011. 7(8): p. 3170-3177. 31. Brown, T.D. and A.B. Ferguson, MECHANICAL PROPERTY DISTRIBUTIONS IN THE CANCELLOUS BONE OF THE HUMAN PROXIMAL FEMUR. Acta Orthopaedica Scandinavica, 1980. 51(3): p. 429-437. 32. Reilly, D.T. and A.H. Burstein, REVIEW ARTICLE - MECHANICAL-PROPERTIES OF CORTICAL BONE. Journal of Bone and Joint Surgery-American Volume, 1974. A 56(5): p. 1001-1022. 33. Maass, H., Mechanical interference of bone development. Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medicin, 1901. 103(2): p. 185-208. 34. Reilly, D.T., A.H. Burstein, and V.H. Frankel, ELASTIC-MODULUS FOR BONE. Journal of Biomechanics, 1974. 7(3): p. 271-&. 35. Hasegawa, K., C.H. Turner, and D.B. Burr, CONTRIBUTION OF COLLAGEN AND MINERAL TO THE ELASTIC-ANISOTROPY OF BONE. Calcified Tissue International, 1994. 55(5): p. 381-386. 36. Skedros, J.G., et al., Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: Results from acoustic velocity measurements in deer calcanei. Bone, 2006. 39(1): p. 143-151. 37. Iyo, T., et al., Anisotropic viscoelastic properties of cortical bone. Journal of Biomechanics, 2004. 37(9): p. 1433-1437. 38. Launey, M.E., M.J. Buehler, and R.O. Ritchie, On the Mechanistic Origins of Toughness in Bone, in Annual Review of Materials Research, Vol 40, D.R. Clarke, M. Ruhle, and F. Zok, Editors. 2010. p. 25-53. 39. Currey, J.D., Biocomposites: Micromechanics of biological hard tissues. Current Opinion in Solid State & Materials Science, 1996. 1(3): p. 440-445. 40. Ritchie, R.O., Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fracture, 1999. 100(1): p. 55-83. 41. Vassileva, P.S., et al., Bulgarian natural diatomites: modification and characterization. Chemical Papers, 2013. 67(3): p. 342-349. 42. Yang, Y.X., R.S. Chen, and A.B. Dai, A study on structure of local diatomites. Acta Chimica Sinica, 1996. 54(1): p. 57-64. 43. Quarles, W. DIATOMACEOUS EARTH FOR PEST CONTROL. 1992; Available from: http://howtousediatomaceousearth.com/wp-content/uploads/2010/12/The-IPM-Practitioner.pdf. 44. Checkoway, H., et al., Dose-response associations of silica with nonmalignant respiratory disease and lung cancer mortality in the diatomaceous earth industry. American Journal of Epidemiology, 1997. 145(8): p. 680-688. 45. Kristiansen, J., Biogeography of Freshwater Algae. 2013: Springer Science & Business Media. 46. Hendey, N.I., An introductory account of the small algae of British coastal waters Part V. Bacillariophyceae (diatoms.) (Fishery Investigations Series IV. An introductory account of the small algae of British coastal waters Part V. Bacillariophyceae. 1964. xxii+317p. Illus.-xxii+317p. Illus. 47. Mann, D.G., THE SPECIES CONCEPT IN DIATOMS - EVIDENCE FOR MORPHOLOGICALLY DISTINCT, SYMPATRIC GAMODEMES IN 4 EPIPELIC SPECIES. Plant Systematics and Evolution, 1989. 164(1-4): p. 215-237. 48. Ha, J.-H., E. Oh, and I.-H. Song, The fabrication and characterization of sintered diatomite for potential microfiltration applications. Ceramics International, 2013. 39(7): p. 7641-7648. 49. Sheng, G., H. Dong, and Y. Li, Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters. Journal of Environmental Radioactivity, 2012. 113: p. 108-115. 50. Hadjar, H., et al., Elaboration and characterisation of new mesoporous materials from diatomite and charcoal. Microporous and Mesoporous Materials, 2008. 107(3): p. 219-226. 51. Zhang, H.F., et al., Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005. 4(10): p. 787-793. 52. Korber, C., et al., INTERACTION OF PARTICLES AND A MOVING ICE-LIQUID INTERFACE. Journal of Crystal Growth, 1985. 72(3): p. 649-662. 53. Asthana, R. and S.N. Tewari, THE ENGULFMENT OF FOREIGN PARTICLES BY A FREEZING INTERFACE. Journal of Materials Science, 1993. 28(20): p. 5414-5425. 54. Uhlmann, D.R., B. Chalmers, and K.A. Jackson, INTERACTION BETWEEN PARTICLES + SOLID-LIQUID INTERFACE. Journal of Applied Physics, 1964. 35(10): p. 2986-&. 55. Bolling, G.F. and J. Cissé, A theory for the interaction of particles with a solidifying front. Journal of Crystal Growth, 1971. 10(1): p. 56-66. 56. Stefanescu, D.M., et al., Behavior of ceramic particles at the solid- liquid metal interface in metal matrix composites. Metallurgical Transactions A, 1988. 19(11): p. 2847-2855. 57. Maxwell, W.A., A.C. Francisco, and R.S. Gurnick, Preliminary investigation of the "freeze-casting" method for forming refractory powders. 1954, Washington, DC: National Advisory Committee for Aeronautics. 58. Schoof, H., et al., Control of pore structure and size in freeze-dried collagen sponges. Journal of Biomedical Materials Research, 2001. 58(4): p. 352-357. 59. Blindow, S., et al., Hydroxyapatite/SiO2 Composites via Freeze Casting for Bone Tissue Engineering. Advanced Engineering Materials, 2009. 11(11): p. 875-884. 60. Porter, M.M., J. McKittrick, and M.A. Meyers, Biomimetic Materials by Freeze Casting. Jom, 2013. 65(6): p. 720-727. 61. Chino, Y. and D.C. Dunand, Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Materialia, 2008. 56(1): p. 105-113. 62. Driscoll, D., A.J. Weisenstein, and S.W. Sofie, Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates. Materials Letters, 2011. 65(23-24): p. 3433-3435. 63. Yook, S.-W., et al., Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries. Materials Letters, 2008. 62(30): p. 4506-4508. 64. Tang, Y.F., et al., Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceramics International, 2013. 39(8): p. 9703-9707. 65. Yook, S.W., et al., Reverse freeze casting: A new method for fabricating highly porous titanium scaffolds, with aligned large pores. Acta Biomaterialia, 2012. 8(6): p. 2401-2410. 66. Porter, M.M., et al., Magnetic freeze casting inspired by nature. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2012. 556: p. 741-750. 67. Ojuva, A., et al., Mechanical performance and CO2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 2015. 35(9): p. 2607-2618. 68. da Silva, L.L. and F. Galembeck, Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 2015. 3(14): p. 7263-7272. 69. Zhu, X.W., et al., Improvement in the strut thickness of reticulated porous ceramics. Journal of the American Ceramic Society, 2001. 84(7): p. 1654-1656. 70. Lange, F.F. and K.T. Miller, OPEN-CELL, LOW-DENSITY CERAMICS FABRICATED FROM RETICULATED POLYMER SUBSTRATES. Advanced Ceramic Materials, 1987. 2(4): p. 827-831. 71. White, R.A., E.W. White, and J.N. Weber, REPLAMINEFORM - NEW PROCESS FOR PREPARING POROUS CERAMIC, METAL, AND POLYMER PROSTHETIC MATERIALS. Science, 1972. 176(4037): p. 922-&. 72. Ota, T., et al., Porous titania ceramic prepared by mimicking silicified wood. Journal of the American Ceramic Society, 2000. 83(6): p. 1521-1523. 73. Fitzgerald, T.J., V.J. Michaud, and A. Mortensen, PROCESSING OF MICROCELLULAR SIC FOAMS .2. CERAMIC FOAM PRODUCTION. Journal of Materials Science, 1995. 30(4): p. 1037-1045. 74. Wang, H., et al., Fabrication of porous SiC ceramics with special morphologies by sacrificing template method. Journal of Porous Materials, 2004. 11(4): p. 265-271. 75. Djuve, J., R.J. Pugh, and J. Sjoblom, Foaming and dynamic surface tension of aqueous polymer/surfactants solutions 1: ethyl(hydroxyethyl) cellulose and sodium dodecyl sulphate. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2001. 186(3): p. 189-202. 76. Britannica, E. Feather. Available from: http://global.britannica.com/EBchecked/topic/52644/barb. 77. Martínez-Hernández, A.L. and C. Velasco-Santos, KERATIN FIBERS FROM CHICKEN FEATHERS: STRUCTURE AND ADVANCES IN POLYMER COMPOSITES. 78. Carlo, H.L., et al., Analysis of Filler Particle Levels and Sizes in Dental Alginates. Materials Research-Ibero-American Journal of Materials, 2010. 13(2): p. 261-264. 79. Gaddis, C.S. and K.H. Sandhage, Freestanding microscale 3D polymeric structures with biologically-derived shapes and nanoscale features. Journal of Materials Research, 2004. 19(9): p. 2541-2545. 80. Cassie, V., Marine Plankton Diatoms. Tuatara, 1959. 7(3). 81. Potapova, M. Hippodonta capitata. 2011; Available from: http://westerndiatoms.colorado.edu/taxa/species/hippodonta_capitata. 82. Kae-Long Lin, J.-Y.L., Water Retention Characteristic of Porous Ceramics Produced from Waste Diatomite and Waste Fiber Glass 2012. 83. Kumeria, T., et al., Graphene oxide decorated diatom silica particles as new nano-hybrids: towards smart natural drug microcarriers. Journal of Materials Chemistry B, 2013. 1(45): p. 6302-6311. 84. Yang Yu, I.R.N., Jonas Addai-Mensah, Dusan Losi, Diatomaceous Earth: a route for large scale preparation of advanced nanoscale materials with unique 3-D morphologies in AINSE Conference on Nuclear and Complementary Techniques of Analysis (16th : 2009 ). 2009, AINSE: Sydney, New South Wales. 85. Lorna J. Gibson, M.F.A., Cellular Solids: Structure and Properties-Second edition. The mechanics of foaams: basic results. 1999. 86. Hodge, A.M., et al., Scaling equation for yield strength of nanoporous open-cell foams. Acta Materialia, 2007. 55(4): p. 1343-1349. 87. Ashby, M.F., The properties of foams and lattices. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2006. 364(1838): p. 15-30. 88. Al-Fawzan, M.A., Methods for estimating the parameters of the Weibull distribution. 2000. 89. Faber, K.T. and A.G. Evans, CRACK DEFLECTION PROCESSES .1. THEORY. Acta Metallurgica, 1983. 31(4): p. 565-576. 90. Perma-Guard, I. Certificate+of+Analysis+July+2014. 2014; Available from: file:///C:/Users/User/Downloads/Certificate+of+Analysis+July+2014.pdf.
|