帳號:guest(18.118.166.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):胡子怡
作者(外文):Hu, Zi Yi
論文名稱(中文):探討以溶膠凝膠法結合固態燒結法合成的陰極材料Li2CoPO4F之電性表現
論文名稱(外文):Investigation on electrochemical performance of Li2CoPO4F cathode material produced by sol-gel method combining with solid-state method
指導教授(中文):蔡哲正
指導教授(外文):Tsai, Cho Jen
口試委員(中文):林居南
甘炯耀
蔡哲正
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031509
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:109
中文關鍵詞:鋰離子電池高電壓陰極材料氟磷酸鈷二鋰
外文關鍵詞:Lithium ion batteryHigh-voltage cathode materialCobalt fluorophosphate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:357
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
高電壓的陰極材料Li2CoPO4F,具有高理論電容量可達287 mAh/g。本實驗先以溶膠凝膠法合成出LiCoPO4,再加入LiF並以固態燒結法合成出Li2CoPO4F,主要探討改變LiCoPO4的製程條件和Li2CoPO4F的燒結條件時,對Li2CoPO4F電性表現的影響。
第一部份為改變LiCoPO4的製程條件,分成四系列:不同化學配比之LiCoPO4;不同鐵離子取代量之LiCoPO4;不同預燒溫度之LiCoPO4;不同預燒溫度之LiCoPO4進行木寡糖包覆與否。第二部份為改變Li2CoPO4F的燒結條件,分成兩系列:不同燒結溫度之Li2CoPO4F;不同燒結時間之Li2CoPO4F。
在本實驗各製程參數的Li2CoPO4F當中,首圈放電電容量最高的是-預燒溫度為420 oC的LiCoPO4所製得的Li2CoPO4F,可達140 mAh/g;而前15圈平均放電電容量最高的是-預燒溫度為500 oC的LiCoPO4進行糖包覆所製得的Li2CoPO4F,約為89.5 mAh/g。本實驗也得到Li2CoPO4F燒結條件的結論:700 oC為最佳的燒結溫度,且在700 oC的燒結溫度下,燒結時間在1.5 ~ 12小時之間變動時,結果差異不大。


Li2CoPO4F, a high-voltage cathode material which has high theoretical capacity of 287 mAh/g. This study used sol-gel method to synthesize LiCoPO4 and then used solid-state method to synthesize Li2CoPO4F with LiF, controlling the synthetical conditions of LiCoPO4 and Li2CoPO4F to explore the effects on electrochemical performance. First, we altered some experimental parameters of synthesizing LiCoPO4 in four series, including matrix composition, iron ion replacement, sintering temperature and whether coating xylooligosaccharide or not. Second, we altered some experimental parameters of synthesizing Li2CoPO4F in two series, including sintering temperature and time.
In this study, among the first cycle discharge capacity of all, Li2CoPO4F made by 420 oC sintering LiCoPO4 has the highest value of 140 mAh/g;among the average discharge capacity of 1 ~ 15 cycles of all, Li2CoPO4F made by 500 oC sintering xylooligosaccharide-coated LiCoPO4 has the highest value of 89.5 mAh/g. The experimental results also indicate that 700 oC is the best sintering temperature, and the consequences are almost the same when sintering time varies in 1.5 ~ 12 hours at 700 oC.
第一章 緒論.......................................................1
1.1 電池的重要性...............................................1
1.2 電池的種類.................................................3
1.3 鋰離子電池.................................................3
1.4 聚陰離子型電池.............................................6
1.5 研究動機...................................................6
1.6 鋰離子電池的工作原理.......................................8
第二章 文獻回顧..................................................10
2.1 材料結構..................................................10
2.2 電性特徵..................................................11
2.3 合成方法..................................................19
2.3.1 固態燒結法............................................19
2.3.2 溶膠凝膠法............................................21
2.3.3 溶膠凝膠法+固態燒結法................................24
2.4 電性改良..................................................25
2.4.1 減小顆粒尺寸..........................................25
2.4.2 碳包覆................................................28
2.4.3 保護層包覆............................................30
2.4.4 控制表面形貌..........................................30
2.4.5 表面改質..............................................31
2.4.6 電解液添加物..........................................31
第三章 實驗步驟..................................................33
3.1 Li2CoPO4F的合成..........................................33
3.2 Li2CoPO4F的合成參數調變..................................38
3.3 陰極製備..................................................41
3.4 電池組裝..................................................42
3.5 循環伏安法測試............................................43
3.6 循環壽命測試..............................................43
3.7 X -光繞射分析.............................................44
3.8 掃描式電子顯微鏡..........................................44
3.9 熱重/熱差分析.............................................44
第四章 結果與討論................................................45
4.1 Li2CoPO4F的基本製程......................................45
4.1.1 LiCoPO4前驅物的熱處理................................45
4.1.2 LiCoPO4以及Li2CoPO4F的燒結..........................49
4.1.3 氧化還原峰的檢測......................................51
4.1.4 不同充電截停電壓的電性表現............................52
4.2 改變化學配比..............................................56
4.2.1 X -光繞射分析.........................................57
4.2.2 微結構分析............................................60
4.2.3 循環壽命測試..........................................61
4.3 鐵離子取代................................................62
4.3.1 X -光繞射分析.........................................63
4.3.2 微結構分析............................................66
4.3.3 循環壽命測試..........................................67
4.4 改變LiCoPO4的預燒溫度....................................68
4.4.1 X -光繞射分析.........................................68
4.4.2 微結構分析............................................70
4.4.3 碳含量分析............................................71
4.4.4 循環壽命測試..........................................75
4.5 木寡糖包覆................................................78
4.5.1 X -光繞射分析.........................................78
4.5.2 微結構分析............................................82
4.5.3 EDX分析.............................................84
4.5.4 碳含量分析............................................85
4.5.5 循環壽命測試..........................................86
4.6 改變Li2CoPO4F的燒結溫度..................................93
4.6.1 X -光繞射分析.........................................93
4.6.2 微結構分析............................................94
4.6.3 循環壽命測試..........................................95
4.7 改變Li2CoPO4F的燒結時間..................................98
4.7.1 X -光繞射分析.........................................98
4.7.2 微結構分析............................................99
4.7.3 循環壽命測試.........................................101
第五章 結論.....................................................102
第六章 參考文獻.................................................105
[1] United States Environmental Protection Agency / Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013 April 2015
[2] Naoki Nitta et al. / Li-ion battery materials: present and future. / Materials Today June 2015, Vol. 18, No. 5
[3] Zhengliang Gong et al. / Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. / Energy Environ. Sci. 2011, 4, 3223–3242
[4] Wang Fuqing et al. / Polyanion-Type Cathode Materials for Li-Ion Batteries. / Progress in Chemistry 2012, Vol. 24, No. 8
[5] Xiaobiao Wu et al. / Promoting long-term cycling performance of high-voltage Li2CoPO4F by the stabilization of electrode/electrolyte interface. / J. Mater. Chem. A 2014, 2, 1006–1013.
[6] Satishkumar B. Chikkannanavar et al. / A review of blended cathode materials for use in Li-ion batteries. / Journal of Power Sources 2014, 248, 91-100
[7] Evgeny V. Antipov et al. / Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries. / IUCrJ 2015, 2, 85–94
[8] Argonne National Laboratory
[9] Nellie R. Khasanova et al. / Structural transformation of Li2CoPO4F upon Li-deintercalation. / Journal of Power Sources 2011, 196, 355-360
[10] Sanghun Lee et al. / Lithium transitionmetal fluorophosphates( Li2CoPO4F and Li2NiPO4F) as cathode materials for lithium ion battery from atomistic simulation. / Journal of solid state Chemistry 2013, 204, 329-334
[11] S. Amaresh et al. / Synthesis and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling. / Phys. Chem. Chem. Phys. 2012, 14, 11904–11909
[12] Deyu Wang et al. / Preparation and electrochemical investigation of Li2CoPO4F cathode material for lithium-ion batteries. / Journal of Power Sources 2011, 196, 2241-2245
[13] Shigeto OKADA et al. / Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. / Journal of Power Sources 2005, 146, 565–569
[14] C. M. Julien et al. / Review of 5-V electrodes for Li-ion batteries:status and trends. / Ionics 2013, 19,951-988
[15] Joke Hadermann et al. / Solving the Structure of Li Ion Battery Materials with Precession Electron Diffraction: Application to Li2CoPO4F. / Chem. Mater. 2011, 23, 3540–3545
[16] Meng Hu et al. / Recent progress in high-voltage lithium ion batteries. / Journal of Power Sources 2013, 237, 229-242
[17] Q.D. Truong et al. / Structural Analysis and Electrochemical Performance of Li2CoPO4F/Cathode Materials. / Electrochimica Acta 2014, 127, 245–251
[18] N.V. Kosova et al. / In situ and ex situ X-ray study of formation and decomposition of Li2CoPO4F under heating and cooling. Investigation of its local structure and electrochemical properties. / Solid State Ionics 2012, 225, 570–574
[19] S. Amaresh et al. / Facile synthesis of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteries with improved electrochemical properties. / Journal of Power Sources 2013, 244, 395-402
[20] S. Amaresh et al. / Alumina coating on 5 V lithium cobalt
fluorophosphate cathode material for lithium secondary batteries – synthesis and electrochemical properties. / RSC Adv. 2014, 4, 23107–23115
[21] Xiaobiao Wu et al. / Sol-gel synthesis of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries. / Journal of Power Sources 2012, 220, 122-129
[22] Toyoki Okumura et al. / Structural Changes in Li2CoPO4F during Lithium-Ion Battery Reactions. / Chem. Mater. 2015, 27, 2839-2847
[23] 徐如人、龐文琴 / 無機合成與製備化學 p.55, 83, 645-648 /五南圖書出版社
[24] J.-M. Tarascon et al. / Issues and challenges facing rechargeable lithium batteries. / Nature 2001, 414, 359-367
[25] Yuanyuan Liu et al. / Controllable synthesis of nano-sized LiFePO4/C via a high shear mixer facilitated hydrothermal method for high rate Li-ion batteries. / Electrochimica Acta 2015, 173, 448–457
[26] Jiangfeng Ni et al. / Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques. / Journal of Power Sources 2013, 221, 35-41
[27] Xianhong Rui et al. / Olivine-Type Nanosheets for Lithium Ion Battery Cathodes. / ACS NANO 2013, Vol. 7, No. 6, 5637-5646
[28] Won Jun Lee et al. / Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. / Chem. Commun. 2014, 50, 6818-6830
[29] Won Jun Lee et al. / N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries. / Energy Environ. Sci. 2014, 7, 621-626
[30] 簡朝和 / Ceramic Processing 2014, p.121-122
[31] 李中光、趙文駿、趙煥平、侯佳蕙 / 微奈米碳球製備活性碳吸附劑之研究 / 桃園縣大學校院產業環保技術服務團 環保簡訊 第18期 7-1 ~ 7-21
[32] R. D. SHANNON / Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. / Acta Cryst. 1976, A32, 751-767
[33] 黃忠良 / 精密陶瓷材料概論 p.6 / 復漢出版社, 2001
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *