帳號:guest(18.118.27.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳睿怡
作者(外文):Chen, Jui Yi
論文名稱(中文):以扶桑及多孔植物為模板- 凝膠溶膠法合成TiO2及CaCO3 之研究
論文名稱(外文):Bio-templating of China Rose and Porous Plants by a Sol-gel Method: Using TiO2 and CaCO3 as Materials
指導教授(中文):陳柏宇
指導教授(外文):Chen, Po Yu
口試委員(中文):李紫原
黃爾文
陳柏宇
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031508
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:116
中文關鍵詞:仿生生物模板多階層結構多孔材料溶膠凝膠法
外文關鍵詞:Bioinspirationbio-templatingsol-gel methodhierarchical structurecellular materials
相關次數:
  • 推薦推薦:0
  • 點閱點閱:174
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
植物是自然界中主要的類別之一,其包含許多優勢與特性,例如: 再生性、環保、多樣性,以及容易取得等特性。在眾多特點中最為突出的是其結構,在多階層尺度下皆展現相當精細的形貌。已有研究嘗試以生物為模板來模仿植物細微結構。本研究以溶膠凝膠法來製備以植物為模板的二氧化鈦及碳酸鈣結構。製備流程為將前趨液滲透入植物模板,再於高溫段燒移去模板,鍛燒後的成品即為具有植物結構的複製產物。此實驗使用的植物模板包括:扶桑(Hibiscus rosa-sinensis Linn.), 木麻黃的果實(Casuarina equisetifolia L.)、肯氏南洋杉的葉子(Araucaria cunninghamii Sweet) 及蓮藕的根(Nelumbo nucifera)。實驗結果證明此方法可成功複製植物的微結構。XRD和EDS確認複製的產物為具銳鈦礦相的二氧化鈦及方解石相的碳酸鈣 。BET結果顯示二氧化鈦及碳酸鈣的結構性複製產物皆有較高的比表面積及較廣的孔洞分布。此外,DVS分析指出結構可明顯提升水氣的吸脫附能力。本研究提出以植物為模板之合成方法可進一步應用於汙染物淨化及生醫材料等領域。
Plants, a major category in nature, have many advantages and unique properties. They are renewable, ecofriendly, diverse, and easily accessible. One of the most characterized advantages is their structure. The structure displays intricate patterns at multiple scales. Some researchers are trying to mimic these special structures through templating. In this study, a sol-gel method by infiltrating the template with precursor and followed by calcination, is proposed to synthesize TiO2 and CaCO3 materials using different plants as templates, including China rose (Hibiscus rosa-sinensis Linn.), Iron wood (Casuarina equisetifolia L.) cone, Hoop pine (Araucaria cunninghamii Sweet) leaf and Lotus (Nelumbo nucifera) root. The results show that the micro-morphologies of plants can be well preserved in the replicas. XRD and EDS analyses confirm that the replicas are anatase TiO2 and calcite CaCO3. BET result proves that the replicas in both materials have higher surface area and wider distribution of pore size than that of powder. In addition, DVS data suggests the evident enhancement of vapor sorption-desorption ability of the replicas. The bio-templating technique investigated in this research can be further applied to pollutant purification and biomedical devices.
List of Tables V
Figure Captions VI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motives and Goals 4
Chapter 2 Literature Review 6
2.1 Biomolecules 6
2.1.1 DNA 6
2.1.2 Protein 7
2.2 Virus 11
2.3 Microorganism 14
2.4 Plants 16
2.4.1 Diatom 16
2.4.2 Plant Fibers 17
2.4.3 Wood Tissues 18
2.4.4 Loufa Sponge 20
2.4.5 Pollen Grains 20
2.4.6 Green Plant Leaves 22
2.5 Animals 22
2.5.1 Insects 23
2.5.2 Marine Animals 26
Chapter 3 Experimental Procedures 28
3.1 Materials and Chemicals 28
3.1.1 Plants 28
3.1.2 Tetrabutyltitanate(TnBT) 28
3.1.3 Acetic Acid Calcium Salt 28
3.1.4 Ethanol 99% 28
3.2 Sample Preparation and Treatment 29
3.2.1 TiO2 Precursor Preparation 29
3.2.2 CaCO3 Precursor Preparation 29
3.2.3 Infiltration and Calcination 29
3.3 Structural Characterization 30
3.3.1 Optical Microscopy (OM) 30
3.3.2 Scanning Electron Microscopy (SEM) 30
3.3.3 Cold Mounting 30
3.3.4 Paraffin Tissue-Processing Method 31
3.4 Compositional Analysis 31
3.4.1 Energy Dispersive Spectroscopy (EDS) 31
3.4.2 X-ray Diffraction 31
3.4.3 Thermogravimetric Analysis 32
3.5 Property Measurements 32
3.5.1 Brunauer-Emmett-Teller Analysis 32
3.5.2 Dynamic Vapor Sorption 33
Chapter 4 Results and Discussions 34
4.1 Characterization of China rose 34
4.1.1 Microscopic Observation of China Rose 34
4.1.2 Microscopic Observation of TiO2 Replicas of China Rose 44
4.1.3 Microscopic Observation of CaCO3 Replicas of China Rose 49
4.1.4 Phase Identification and Composition Analysis 53
4.1.5 Thermogravity analysis (TGA) 58
4.2 Characterization of TiO2 Replica Porous Plants 65
4.2.1 Microscopic Observation of Porous Plants 65
4.2.2 Microscopic Observation of TiO2 Replica 75
4.2.3 Phase Identification and Composition Analysis 81
4.3 Characterization of CaCO3 Replica of Porous Plants 83
4.3.1 Microscopic Observation of CaCO3 Replicas 83
4.3.2 Phase Identification and Composition Analysis 88
4.4 BET & DVS Analysis of Lotus Root Replica 89
4.4.1 Brunauer–Emmett–Teller Analysis (BET) 89
4.4.2 Dynamic Vapor Sorption (DVS) 98
Chapter 5 Conclusions 102
Chapter 6 Future Work 106
6.1 Scaffold Fabrication 106
6.2 Nanowire 108
6.3 DVS of CaCO3 Replica 109
References 111
[1] T. X. Fan, S. K. Chow, and Z. Di, "Biomorphic mineralization: From biology to materials," Progress in Materials Science, vol. 54, pp. 542-659, Jul 2009.
[2] E. K. Payne, N. L. Rosi, C. Xue, and C. A. Mirkin, "Sacrificial biological templates for the formation of nanostructured metallic microshells," Angewandte Chemie-International Edition, vol. 44, pp. 5064-5067, 2005.
[3] T. X. Fan, B. H. Sun, J. J. Gu, D. Zhang, and L. W. M. Lau, "Biomorphic Al2O3 fibers synthesized using cotton as bio-templates," Scripta Materialia, vol. 53, pp. 893-897, Oct 2005.
[4] R. R. Wang, Q. R. Li, D. Y. Xie, H. Y. Xiao, and H. X. Lu, "Synthesis of NiO using pine as template and adsorption performance for Pb(II) from aqueous solution," Applied Surface Science, vol. 279, pp. 129-136, Aug 15 2013.
[5] K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, and E. Braun, "Sequence-specific molecular lithography on single DNA molecules," Science, vol. 297, pp. 72-75, Jul 5 2002.
[6] S. M. Holmes, B. E. Graniel-Garcia, P. Foran, P. Hill, E. P. L. Roberts, B. H. Sakakini, et al., "A novel porous carbon based on diatomaceous earth," Chemical Communications, pp. 2662-2663, 2006.
[7] Y. P. Chen, J. M. Cao, M. B. Zheng, X. F. Ke, H. Ji, J. S. Liu, et al., "Novel synthesis of nanoporous nickel oxide and nickel nanoparticles/amorphous carbon composites using soluble starch as the template," Chemistry Letters, vol. 35, pp. 700-701, Jul 5 2006.
[8] T. L. Church, S. Fallani, J. Liu, M. Zhao, and A. T. Harris, "Novel biomorphic Ni/SiC catalysts that enhance cellulose conversion to hydrogen," Catalysis Today, vol. 190, pp. 98-106, Aug 1 2012.
[9] W. Zhou and H. G. Fu, "Mesoporous TiO2: Preparation, Doping, and as a Composite for Photocatalysis," Chemcatchem, vol. 5, pp. 885-894, Apr 2013.
[10] K. Nakata and A. Fujishima, "TiO2 photocatalysis: Design and applications," Journal of Photochemistry and Photobiology C-Photochemistry Reviews, vol. 13, pp. 169-189, Sep 2012.
[11] D. A. Belova, L. Z. Lakshtanov, J. F. Carneiro, and S. L. S. Stipp, "Nickel adsorption on chalk and calcite," Journal of Contaminant Hydrology, vol. 170, pp. 1-9, Dec 1 2014.
[12] Y. Liu, X. Sheng, Y. H. Dong, and Y. J. Ma, "Removal of high-concentration phosphate by calcite: Effect of sulfate and pH," Desalination, vol. 289, pp. 66-71, Mar 15 2012.
[13] C. Santschi and M. J. Rossi, "Uptake of CO2, SO2, HNO3 and HCl on calcite (CaCO3) at 300 K: Mechanism and the role of adsorbed water," Journal of Physical Chemistry A, vol. 110, pp. 6789-6802, Jun 1 2006.
[14] Q. Gu, C. D. Cheng, and D. T. Haynie, "Cobalt metallization of DNA: toward magnetic nanowires," Nanotechnology, vol. 16, pp. 1358-1363, Aug 2005.
[15] Q. Gu, C. D. Cheng, S. Suryanarayanan, K. Dai, and D. T. Haynie, "DNA-templated fabrication of nickel nanocluster chains," Physica E-Low-Dimensional Systems & Nanostructures, vol. 33, pp. 92-98, Jun 2006.
[16] J. L. Coffer, S. R. Bigham, X. Li, R. F. Pinizzotto, Y. G. Rho, R. M. Pirtle, et al., "Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA," Applied Physics Letters, vol. 69, pp. 3851-3853, Dec 16 1996.
[17] W. H. Massover, "Ultrastructure of Ferritin and Apoferritin - a Review," Micron, vol. 24, pp. 389-437, 1993.
[18] I. Yamashita, J. Hayashi, and M. Hara, "Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin," Chemistry Letters, vol. 33, pp. 1158-1159, Sep 5 2004.
[19] F. Patolsky, Y. Weizmann, and I. Willner, "Actin-based metallic nanowires as bio-nanotransporters," Nature Materials, vol. 3, pp. 692-695, Oct 2004.
[20] L. M. Huang, H. T. Wang, C. Y. Hayashi, B. Z. Tian, D. Y. Zhao, and Y. S. Yan, "Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers," Journal of Materials Chemistry, vol. 13, pp. 666-668, 2003.
[21] U. Feldkamp and C. M. Niemeyer, "Rational design of DNA nanoarchitectures," Angewandte Chemie-International Edition, vol. 45, pp. 1856-1876, 2006.
[22] J. Richter, "Metallization of DNA," Physica E-Low-Dimensional Systems & Nanostructures, vol. 16, pp. 157-173, Feb 2003
[23] C. E. Flynn, S. W. Lee, B. R. Peelle, and A. M. Belcher, "Viruses as vehicles for growth, organization and assembly of materials," Acta Materialia, vol. 51, pp. 5867-5880, Nov 25 2003.
[24] W. Shenton, T. Douglas, M. Young, G. Stubbs, and S. Mann, "Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus," Advanced Materials, vol. 11, pp. 253-+, Feb 11 1999.
[25] M. Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S. K. Kulkarni, et al., "Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3," Nanotechnology, vol. 14, pp. 95-100, Jan 2003.
[26] [S. Senapati, A. Ahmad, M. I. Khan, M. Sastry, and R. Kumar, "Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles," Small, vol. 1, pp. 517-520, May 2005.
[27] M. Kowshik, W. Vogel, J. Urban, S. K. Kulkarni, and K. M. Paknikar, "Microbial synthesis of semiconductor PbS nanocrystallites," Advanced Materials, vol. 14, pp. 815-818, Jun 5 2002.
[28] A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, R. Ramani, V. Srinivas, et al., "Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species," Nanotechnology, vol. 14, pp. 824-828, Jul 2003.
[29] T. Klaus, R. Joerger, E. Olsson, and C. G. Granqvist, "Silver-based crystalline nanoparticles, microbially fabricated," Proceedings of the National Academy of Sciences of the United States of America, vol. 96, pp. 13611-13614, Nov 23 1999.
[30] R. Gordon, F. A. S. Sterrenburg, and K. H. Sandhage, "A special issue on diatom Nanotechnology," Journal of Nanoscience and Nanotechnology, vol. 5, pp. 1-4, Jan 2005.
[31] H. E. Townley, A. R. Parker, and H. White-Cooper, "Exploitation of diatom frustules for nanotechnology: tethering active biomolecules," Advanced Functional Materials, vol. 18, pp. 369-374, Jan 24 2008.
[32] Y. Cai and K. H. Sandhage, "Zn2SiO4-coated microparticles with biologically-controlled 3D shapes," Physica Status Solidi a-Applications and Materials Science, vol. 202, pp. R105-R107, Aug 2005.
[33] S. M. Allan, M. R. Weatherspoon, P. D. Graham, Y. Cai, M. S. Haluska, R. L. Snyder, et al., "Shape-Preserving Chemical Conversion of Self-Assembled 3-D Bioclastic Micro/Nanostructures Via Low-Temperature Displacement Reactions," Advances in Ceramic Coatings and Ceramic-Metal Systems, vol. 26, pp. 289-296, 2005.
[34] U. Kusari, Z. Bao, Y. Cai, G. Ahmad, K. H. Sandhage, and L. G. Sneddon, "Formation of nanostructured, nanocrystalline boron nitride microparticles with diatom-derived 3-D shapes," Chemical Communications, pp. 1177-1179, 2007.
[35] M. Patel and B. K. Padhi, "Titania Fibers through Jute Fiber Substrates," Journal of Materials Science Letters, vol. 12, pp. 1234-1235, Aug 1 1993.
[36] S. Gruber, R. N. K. Taylor, H. Scheel, P. Greil, and C. Zollfrank, "Cellulose-biotemplated silica nanowires coated with a dense gold nanoparticle layer," Materials Chemistry and Physics, vol. 129, pp. 19-22, Sep 15 2011.
[37] X. F. Li, T. X. Fan, Z. T. Liu, J. Ding, Q. X. Guo, and D. Zhang, "Synthesis and hierarchical pore structure of biomorphic manganese oxide derived from woods," Journal of the European Ceramic Society, vol. 26, pp. 3657-3664, 2006.
[38] T. Ota, M. Imaeda, H. Takase, M. Kobayashi, N. Kinoshita, T. Hirashita, et al., "Porous titania ceramic prepared by mimicking silicified wood," Journal of the American Ceramic Society, vol. 83, pp. 1521-1523, Jun 2000.
[39] M. Singh and B. M. Yee, "Reactive processing of environmentally conscious, biomorphic ceramics from natural wood precursors," Journal of the European Ceramic Society, vol. 24, pp. 209-217, 2004.
[40] B. H. Sun, T. X. Fan, D. Zhang, and T. Okabe, "Microstructure analysis of morph-genetic SiC/C ceramics from wood," Journal of Advanced Materials, vol. 37, pp. 76-80, Oct 2005.
[41] B. H. Sun, T. X. Fan, D. Zhang, and T. Okabe, "The synthesis and microstructure of morph-genetic TiC/C ceramics," Carbon, vol. 42, pp. 177-182, 2004.
[42] M. Luo, J. Q. Gao, X. Zhang, H. F. Yang, G. Y. Hou, D. Ouyang, et al., "Processing of porous TiN/C ceramics from biological templates," Materials Letters, vol. 61, pp. 186-188, Jan 2007.
[43] A. Zampieri, G. T. P. Mabande, T. Selvam, W. Schwieger, A. Rudolph, R. Hermann, et al., "Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors," Materials Science & Engineering C-Biomimetic and Supramolecular Systems, vol. 26, pp. 130-135, Jan 2006.
[44] D. Bu and H. S. Zhuang, "Synthesis, characterization, and photocatalytic studies of copper-doped TiO2 hollow spheres using rape pollen as a novel biotemplate," Catalysis Communications, vol. 29, pp. 24-28, Dec 5 2012.
[45] S. R. Hall, H. Bolger, and S. Mann, "Morphosynthesis of complex inorganic forms using pollen grain templates," Chemical Communications, pp. 2784-2785, 2003.
[46] X. F. Li, T. X. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, et al., "Enhanced Light-Harvesting and Photocatalytic Properties in Morph-TiO2 from Green-Leaf Biotemplates," Advanced Functional Materials, vol. 19, pp. 45-56, Jan 9 2009.
[47] D. L. Yang, T. X. Fan, D. Zhang, J. Zhu, Y. Wang, B. Du, et al., "Biotemplated Hierarchical Porous Material: The Positively Charged Leaf," Chemistry-a European Journal, vol. 19, pp. 4742-4747, Apr 2013.
[48] M. Srinivasarao, "Nano-optics in the biological world: Beetles, butterflies, birds, and moths," Chemical Reviews, vol. 99, pp. 1935-1961, Jul 1999.
[49] J. Y. Huang, X. D. Wang, and Z. L. Wang, "Controlled replication of butterfly wings for achieving tunable photonic properties," Nano Letters, vol. 6, pp. 2325-2331, Oct 11 2006.
[50] W. Zhang, D. Zhang, T. X. Fan, J. Ding, J. J. Gu, Q. X. Guo, et al., "Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates," Bioinspiration & Biomimetics, vol. 1, pp. 89-95, Sep 2006.
[51] X. N. Zang, Y. Y. Ge, J. J. Gu, S. M. Zhu, H. L. Su, C. L. Feng, et al., "Tunable optical photonic devices made from moth wing scales: a way to enlarge natural functional structures' pool," Journal of Materials Chemistry, vol. 21, pp. 13913-13919, 2011.
[52] R. Seshadri and F. C. Meldrum, "Bioskeletons as templates for ordered, macroporous structures," Advanced Materials, vol. 12, pp. 1149-+, Aug 2 2000.
[53] F. C. Meldrum and R. Seshadri, "Porous gold structures through templating by echinoid skeletal plates," Chemical Communications, pp. 29-30, 2000.
[54] R. J. Park and F. C. Meldrum, "Shape-constraint as a route to calcite single crystals with complex morphologies," Journal of Materials Chemistry, vol. 14, pp. 2291-2296, 2004.
[55] W. B. Yue, A. N. Kulak, and F. C. Meldrum, "Growth of single crystals in structured templates," Journal of Materials Chemistry, vol. 16, pp. 408-416, Jan 28 2006.
[56] R. J. Park and F. C. Meldrum, "Synthesis of single crystals of calcite with complex morphologies," Advanced Materials, vol. 14, pp. 1167-1169, Aug 16 2002.
[57] K. D. Batagin-Piotto, C. V. de Almeida, F. A. Piotto, and M. de Almeida, "Anatomical analysis of peach palm (Bactris gasipaes) leaves cultivated in vitro, ex vitro and in vivo," Brazilian Journal of Botany, vol. 35, pp. 71-78, 2012.
[58] C. R. Somerville, "Future prospects for genetic modification of the composition of edible oils from higher plants," Am J Clin Nutr, vol. 58, pp. 270S-275S, Aug 1993.
[59] I. Egea, C. Barsan, W. P. Bian, E. Purgatto, A. Latche, C. Chervin, et al., "Chromoplast Differentiation: Current Status and Perspectives," Plant and Cell Physiology, vol. 51, pp. 1601-1611, Oct 2010.
[60] S. J. Palmer and W. J. Davies, "An analysis of relative elemental growth rate, epidermal cell size and xyloglucan endotransglycosylase activity through the growing zone of ageing maize leaves," Journal of Experimental Botany, vol. 47, pp. 339-347, Mar 1996.
[61] J. C. Qian, F. Chen, X. B. Zhao, and Z. G. Chen, "China rose petal as biotemplate to produce two-dimensional ceria nanosheets," Journal of Nanoparticle Research, vol. 13, pp. 7149-7158, Dec 2011.
[62] R. L. Mada, Organic Recations, Conversions, Mechamisms, and Problems: S. Chand & Co, 2009.
[63] M. Brebu and C. Vasile, "Thermal Degradation of Lignin - a Review," Cellulose Chemistry and Technology, vol. 44, pp. 353-363, Sep-Oct 2010.
[64] D. K. Shen, J. M. Ye, R. Xiao, and H. Y. Zhang, "TG-MS analysis for thermal decomposition of cellulose under different atmospheres," Carbohydrate Polymers, vol. 98, pp. 514-521, Oct 15 2013.
[65] D. Shen, R. Xiao, S. Gu, and H. Zhang, The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass, Cellulose - Biomass Conversion InTech, 2013.
[66] G. Paliyath, D. P. Murr, A. K. Handa, and S. Lurie, Postharvest Biology and Technology of Fruits, Vegetables, and Flowers: Wiley-Blackwell, 2008.
[67] Q. Wang, D. H. Wang, G. Q. Jin, Y. Y. Wang, and X. Y. Guo, "Biomorphic SiC from lotus root," Particuology, vol. 7, pp. 199-203, Jun 2009.
[68] R. L. Hassel and N. D. Hesse. (2007, Characterization of Water Adsorption and Absorption in Pharmaceuticals
[69] F. Thielmann. Hysteresis Effects in Vapour Sorption. DVS Application Note 37.
[70] Y. Du, N. A. Deskins, Z. Zhang, Z. Dohnalek, M. Dupuis, and I. Lyubinetsky, "Two Pathways for Water Interaction with Oxygen Adatoms on TiO2(110)," Physical Review Letters, vol. 102, Mar 6 2009.
[71] Y. G. Du, N. A. Deskins, Z. R. Zhang, Z. Dohnalek, M. Dupuis, and I. Lyubinetsky, "Water Interactions with Terminal Hydroxyls on TiO2(110)," Journal of Physical Chemistry C, vol. 114, pp. 17080-17084, Oct 14 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Multi-scale Structural Characterization and Mechanical Evaluation of Protective Bio-composites: Inspirations from Cobra Snake and Chinese Striped-neck Turtle Eggshells
2. 以冷凍鑄造及高分子聚合法合成多功能具多階層孔洞之矽藻土基複合材料
3. 模仿豬籠草唇合成具方向性潤濕之長效親水表面
4. 具多階層蜂巢結構的能量吸收器之面內壓縮行為:設計因素與可調控性能
5. 鱷魚骨板之啟發:防禦性生物複合材料之多尺度結構分析及機械性質研究
6. 烏賊骨板之結構與機械性質設計研究
7. 以化學氣相沉積法增強陶瓷支架之機械性質
8. 鮑魚珍珠層之仿生啟發: 以濺鍍與脈衝雷射蒸鍍複合技術合成氧化鋯/聚醯亞胺多層膜之微結構分析與機械性質研究
9. 兩種水棲昆蟲之吸附結構與機制研究:以石蛉幼蟲與網蚊幼蟲為啟發
10. 甲殼類外殼之仿生啟發:以濺鍍與脈衝雷射蒸鍍複合系統合成氧化鋯與氧化鈦/聚亞醯胺多層鍍膜之研究
11. 鯊魚牙齒之多尺度結構觀察與機械性質研究
12. Inspirations from the Peristome of Nepenthes: Microstructural Characterization and Wettability Measurement of Multifunctional Surfaces Synthesized by Bio-replication and Surface Modification Techniques
13. Multi-scale Structural Characterization and Attachment Mechanisms of the Hillstream River Loach (Sinogastromyzon puliensis)
14. 以冷凍鑄造法及矽藻土合成具多階層孔洞結構之仿生複合材料
15. 以魚鱗為原料合成氫氧基磷灰石多孔材料應用於生醫領域及重金屬吸附功能之研究
 
* *