帳號:guest(18.223.203.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳易珉
作者(外文):Wu, I Ming
論文名稱(中文):原子層沈積二氧化鈦於奈米碳管作為免黏著劑之超級電容電極
論文名稱(外文):Atomic layer deposition of TiO2 on carbon nanotubes as binder-free supercapacitor electrodes.
指導教授(中文):徐文光
指導教授(外文):Hsu, Wen Kuang
口試委員(中文):呂昇益
許景棟
徐文光
口試委員(外文):Lu, Sheng Yi
Hsu, Ching Tung
Hsu, Wen Kuang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031502
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:69
中文關鍵詞:超級電容原子層沈積二氧化鈦奈米碳管比電容
外文關鍵詞:supercapacitorsatomic layer depositiontitanium dioxidecarbon nanotubesspecific capacitance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:207
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
現今超級電容的電極研究對象多以金屬氧化物/氮化物為主,因此類材料能提供擬電容效應。其中,二氧化鈦的原料較易取得、對環境負擔小和良好的表面化學活性,具備作為超級電容電極的潛力;但二氧化鈦導電度較差,會影響電解液中電荷的傳遞;此外,過去研究奈米結構之粉體,多需要與黏著劑混合製成電極,同樣會降低導電度以及影響離子滲透能力。因此,本研究嘗試加入奈米碳管,同時以原子層沈積製成鎳網/奈米碳管/二氧化鈦之層狀結構。首先,將酸化後的奈米碳管以電泳沈積至鎳網,接著以原子層沈積數奈米厚度之二氧化於奈米碳管表面。電極的形貌構造與表面組成透過X光繞射儀、拉曼光譜儀、X光光電子能譜儀、能量散射光譜儀、場發射掃描式電子顯微鏡和穿透式電子顯微鏡得到資訊;電極的電容特性藉由電化學工作站分析,得知其比電容、倍率性能、充放電循環壽命及系統阻抗。本研究顯示,酸化碳管的結構和表面官能基利於二氧化鈦沈積,提升二氧化鈦的利用率;且碳管提供電子及離子的傳輸途徑,降低電荷交換的阻抗,經過原子層沈積50層/100層二氧化鈦的電極,比電容值分別可達到564 F/g 及432 F/g。
Recent study on supercapacitor electrodes focuses on metal oxide/nitride which shows high pseudo-capacitance. Titanium oxide (TiO2) has a potential to be a candidate, because of low production cost, nontoxicity and well electrochemical activity on surfaces. However, most metal oxide are made in powder form, mixing with binder as an electrode, which decreases in conductivity and ionic accessibility of electrode. In this study, carbon nanotubes (CNTs) are introduced to improve above problems. First, nitric acidized CNTs are electrophoretically deposited on nickel mesh and TiO2 is coated onto CNTs following via atomic layer deposition(ALD). The laminar structures(Ni/CNT/TiO2) are characterized by X-ray diffraction (XRD), Raman measurement, Energy dispersive spectrometer(EDS), field emission scanning electron microscopy (FE-SEM) and transition electron microscopy (TEM) . The electrochemical properties of electrode, including capacitance, rate capability, and charge-discharge cycle, are studied by cyclic voltammetry (CV) in Autolab. Result demonstrate that mesoporous structure of carbon nanotubes provide conductive network for charge transport. Specific capacitance reaches 564 F/g and 432 F/g in alkaline solution at scan rate of 10 mV/s for grown using 50 and 100 cycles ALD, respectively.
一. 文獻回顧 1
1-1 超級電容器 1
1-1-1 超級電容器簡介 1
1-1-2 超級電容儲能機制 3
1-1-3 電化學性質分析方法 5
1-1-3-1 比電容的量測與計算 5
1-1-3-2 電化學交流阻抗 6
1-1-4 超級電容效能 7
1-2 常見的電極材料 8
1-2-1 碳系材料 8
1-2-2 過渡金屬氧化物 9
1-2-3 導電高分子 9
1-2-4 二氧化鈦 10
1-3奈米碳管 12
1-3-1 奈米碳管簡介 12
1-3-2 奈米碳管的基本電性 15
1-4 原子層沈積 17
1-4-1 原子層沈積簡介 17
1-4-2 原子層沈積之成長機制 17
二. 研究動機 20
三. 實驗流程 21
3-1 實驗流程圖 22
3-2 藥品及儀器 23
3-3 實驗步驟 24
3-3-1酸化奈米碳管 24
3-3-2 電泳沈積奈米碳管 25
3-3-3 原子層沈積二氧化鈦 27
3-4 分析儀器 29
3-4-1 結構與組成測定 29
3-4-1-1 X光繞射分析(XRD) 29
3-4-1-2 拉曼光譜分析 ( Raman ) 29
3-4-1-3 X光光電子能譜分析 ( ESCA ) 30
3-4-1-4 掃描式電子顯微鏡分析 ( FE-SEM ) 30
3-4-1-5 穿透式電子顯微鏡分析( ULTRA-HRTEM ) 30
3-4-1-6 X光能量散佈分析 ( EDS ) 31
3-4-1-7 BET氣體吸附比表面積測試 ( BET ) 31
3-4-2 電化學性質測定 31
四. 結果與討論 33
4-1 結構與組成測定 34
4-1-1 X光繞射分析 (XRD) 34
4-1-2 拉曼光譜分析 (Raman) 36
4-1-3 X光光電子能譜 (ESCA) 38
4-1-4 場發射掃描式電子顯微鏡 (FE-SEM) 42
4-1-5 場發射掃描穿透式球差修正電子顯微鏡(ULTRA-HRTEM) 47
4-1-6 比表面積測定 ( BET ) 48
4-2 電化學性質測定 50
4-2-1 比電容測試 51
4-2-2 倍率性能測試 54
4-2-3 電化學組抗測試 56
4-2-4 循環壽命測試 59
4-2-5 熱處理對其性質與結構影響 61
五. 結論 65
參考文獻 66
1. Pandolfo, A.; Hollenkamp, A. Journal of power sources 2006, 157, (1), 11-27.
2. Choudhury, N.; Sampath, S.; Shukla, A. Energy & Environmental Science 2009, 2, (1), 55-67.
3. Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. International journal of hydrogen energy 2009, 34, (11), 4889-4899.
4. An, K. H.; Jeon, K. K.; Heo, J. K.; Lim, S. C.; Bae, D. J.; Lee, Y. H. Journal of the Electrochemical Society 2002, 149, (8), A1058-A1062.
5. Shi, F.; Li, L.; Wang, X.-l.; Gu, C.-d.; Tu, J.-p. RSC Advances 2014, 4, (79), 41910-41921.
6. Mitra, S.; Sampath, S. Electrochemical and solid-state letters 2004, 7, (9), A264-A268.
7. Wang, H.; Yoshio, M.; Thapa, A. K.; Nakamura, H. Journal of power sources 2007, 169, (2), 375-380.
8. Fang, B.; Binder, L. Electrochimica acta 2007, 52, (24), 6916-6921.
9. Honda, Y.; Haramoto, T.; Takeshige, M.; Shiozaki, H.; Kitamura, T.; Ishikawa, M. Electrochemical and Solid-State Letters 2007, 10, (4), A106-A110.
10. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.-L. Science 2006, 313, (5794), 1760-1763.
11. Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y.; Ji, H.; Murali, S.; Wu, Y.; Perales, S.; Clevenger, B.; Ruoff, R. S. Nano letters 2012, 12, (4), 1806-1812.
12. Zheng, J.; Jow, T. Journal of the Electrochemical Society 1995, 142, (1), L6-L8.
13. Mastragostino, M.; Arbizzani, C.; Soavi, F. Journal of Power Sources 2001, 97, 812-815.
14. Xie, Y.; Zhou, L.; Huang, C.; Huang, H.; Lu, J. Electrochimica Acta 2008, 53, (10), 3643-3649.
15. Wang, J.; Polleux, J.; Lim, J.; Dunn, B. The Journal of Physical Chemistry C 2007, 111, (40), 14925-14931.
16. Hsieh, C.-T.; Chang, C.-C.; Chen, W.-Y.; Hung, W.-M. Journal of Physics and Chemistry of Solids 2009, 70, (6), 916-921.
17. Sun, X.; Xie, M.; Wang, G.; Sun, H.; Cavanagh, A. S.; Travis, J. J.; George, S. M.; Lian, J. Journal of the Electrochemical Society 2012, 159, (4), A364-A369.
18. Zhou, H.; Zhang, Y. The Journal of Physical Chemistry C 2014, 118, (11), 5626-5636.
19. Iijima, S. nature 1991, 354, (6348), 56-58.
20. Dresselhaus, M.; Dresselhaus, G.; Saito, R. Carbon 1995, 33, (7), 883-891.
21. Dresselhaus, M.; Dresselhaus, G.; Charlier, J.-C.; Hernandez, E. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 2004, 362, (1823), 2065-2098.
22. Dai, H. Surface Science 2002, 500, (1), 218-241.
23. Suntola, T.; Antson, J. Method for Producing Compound Thin Films; DTIC Document: 1977.
24. 章詠潢; 陳智; 彭智龍. 原子層沉積系統原理及其應用,儀科新知 2007, 159, 33-43.
25. Aarik, J.; Aidla, A.; Mändar, H.; Sammelselg, V. Journal of Crystal Growth 2000, 220, (4), 531-537.
26. Kim, H.; Maeng, W.-J. Thin Solid Films 2009, 517, (8), 2563-2580.
27. Elers, K. E.; Saanila, V.; Soininen, P. J.; Li, W. M.; Kostamo, J. T.; Haukka, S.; Juhanoja, J.; Besling, W. F. Chemical Vapor Deposition 2002, 8, (4), 149-153.
28. Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N. Journal of Materials Chemistry 2012, 22, (36), 19161-19167.
29. Kim, H.; Cho, M. Y.; Kim, M. H.; Park, K. Y.; Gwon, H.; Lee, Y.; Roh, K. C.; Kang, K. Advanced Energy Materials 2013, 3, (11), 1500-1506.
30. Esumi, K.; Ishigami, M.; Nakajima, A.; Sawada, K.; Honda, H. Carbon 1996, 34, (2), 279-281.
31. Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Carbon 2008, 46, (6), 833-840.
32. Boccaccini, A. R.; Cho, J.; Roether, J. A.; Thomas, B. J.; Minay, E. J.; Shaffer, M. S. Carbon 2006, 44, (15), 3149-3160.
33. Russ, B. E.; Talbot, J. B.; Sluzky, E. Journal of the Society for Information Display 1996, 4, (3), 207-211.
34. Shane, M. J.; Talbot, J. B.; Kinney, B. G.; Sluzky, E.; Hesse, K. Journal of colloid and interface science 1994, 165, (2), 334-340.
35. Zhao, H.; Song, H.; Li, Z.; Yuan, G.; Jin, Y. Applied surface science 2005, 251, (1), 242-244.
36. Hamaker, H. Trans. Faraday Soc. 1940, 35, 279-287.
37. Cho, J.; Konopka, K.; Rożniatowski, K.; García-Lecina, E.; Shaffer, M. S.; Boccaccini, A. R. Carbon 2009, 47, (1), 58-67.
38. Ritala, M.; Leskelä, M.; Nykänen, E.; Soininen, P.; Niinistö, L. Thin Solid Films 1993, 225, (1), 288-295.
39. Farmer, D. B.; Gordon, R. G. Electrochemical and Solid-State Letters 2005, 8, (4), G89-G91.
40. Farmer, D. B.; Gordon, R. G. Nano letters 2006, 6, (4), 699-703.
41. Curran, S.; Talla, J.; Zhang, D.; Carroll, D. Journal of materials research 2005, 20, (12), 3368-3373.
42. Wagner, C.; Muilenberg, G., Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer: 1979.
43. Yan, X.-b.; Tay, B. K.; Yang, Y. The Journal of Physical Chemistry B 2006, 110, (51), 25844-25849.
44. An, G.; Ma, W.; Sun, Z.; Liu, Z.; Han, B.; Miao, S.; Miao, Z.; Ding, K. Carbon 2007, 45, (9), 1795-1801.
45. Huang, B.-S.; Tseng, H.-H.; Wey, M.-Y. Journal of the Ceramic Society of Japan 2009, 117, (1366), 753-758.
46. Wang, Q.; Yang, D.; Chen, D.; Wang, Y.; Jiang, Z. Journal of Nanoparticle Research 2007, 9, (6), 1087-1096.
47. Wepasnick, K. A.; Smith, B. A.; Bitter, J. L.; Fairbrother, D. H. Analytical and bioanalytical chemistry 2010, 396, (3), 1003-1014.
48. Wang, H.; Zhou, A.; Peng, F.; Yu, H.; Yang, J. Journal of Colloid and Interface Science 2007, 316, (2), 277-283.
49. Brunauer, S.; Emmett, P. H.; Teller, E. Journal of the American chemical society 1938, 60, (2), 309-319.
50. Zhang, L. L.; Zhao, X. Chemical Society Reviews 2009, 38, (9), 2520-2531.
51. Zheng, Y.-z.; Ding, H.-y.; Zhang, M.-l. Materials Research Bulletin 2009, 44, (2), 403-407.
52. Niu, J.; Pell, W. G.; Conway, B. E. Journal of power sources 2006, 156, (2), 725-740.
53. Jampani, P. H.; Kadakia, K.; Hong, D. H.; Epur, R.; Poston, J. A.; Manivannan, A.; Kumta, P. N. Journal of The Electrochemical Society 2013, 160, (8), A1118-A1127.
54. Germain, P. S.; Pell, W. G.; Conway, B. E. Electrochimica acta 2004, 49, (11), 1775-1788.
55. Brug, G.; Van Den Eeden, A.; Sluyters-Rehbach, M.; Sluyters, J. Journal of electroanalytical chemistry and interfacial electrochemistry 1984, 176, (1), 275-295.
56. Herraiz-Cardona, I.; Ortega, E.; Pérez-Herranz, V. Electrochimica Acta 2011, 56, (3), 1308-1315.
57. Kim, E. J.; Hahn, S.-H. Materials letters 2001, 49, (3), 244-249.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *