帳號:guest(3.21.93.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):趙君怡
作者(外文):Chao, Dani C.-Y.
論文名稱(中文):從WISE星系分佈與普朗克CMB溫度分佈的互相關汲取完全薩克斯-瓦福效應
論文名稱(外文):Extracting the Integrated Sachs-Wolfe Effect from the Cross-correlation of WISE Galaxies with Planck CMB Temperature Sky Maps
指導教授(中文):後藤友嗣
指導教授(外文):Goto, Tomotsugu
口試委員(中文):賴詩萍
王為豪
口試委員(外文):Lai, Shih-Ping
Wang, Wei-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:102025503
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:45
中文關鍵詞:宇宙微波背景輻射暗能量大尺度結構
外文關鍵詞:Cosmic Microwave BackgroundDark EnergyLarge-scale Structures
相關次數:
  • 推薦推薦:0
  • 點閱點閱:132
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
暗能量是當今天文學上未解的謎團之一。藉由宇宙微波背景輻射(CMB),完全薩克斯-瓦福(ISW)效應是一個研究暗能量的方法:當來自CMB的光子經過重力位能井時,會在掉入位能井時先藍移,之後在離開位能井時紅移;當宇宙的主要組成是物質時,重力位能井並不會隨時間改變,所以光子所經歷的藍移和紅移大小相同、相互抵消,光子並不會有任何改變;然而,當宇宙的主要組成是暗能量時,重力位能井會因為暗能量造成的宇宙加速膨脹、而隨著時間衰減,於是光子離開位能井時受到的紅移減少,不再能抵消其所受到的藍移,因此從CMB而來的光子便因為殘留在其上的藍移、而溫度升高。

我們可從CMB溫度微擾的分佈與大尺度結構間的互相關探測ISW效應。在ISW相關文獻中,大部分的研究量測威爾金森微波微擾探測器(WMAP)的CMB溫度微擾分佈與來自各種不同觀測的星系分佈之間的互相關,一些比較顯著研究探測到ISW效應達2-3σ。另一方面,在量測互相關時所使用的星系數據中,廣域紅外線全天探測衛星(WISE)是一個極為合適的資料來源:全天域,並且有足夠深的極限能見度。

普朗克衛星(Planck)為WMAP的後繼者,具有更好的靈敏度和更高的解析力,儘管如此,卻少有研究同時使用Planck與WISE作ISW效應的研究。在為數不多同時利用Planck與WISE的ISW研究中,關於星系樣本的選取、前景干擾的屏蔽、統計方法的應用對ISW訊號的影響則只有簡略的探討;然而,不同的星系樣本的選取、前景干擾的屏蔽或是統計方法的應用,都是造成各種ISW文獻中訊號大小不一致的原因。

因此,在這篇論文中,我們使用WISE的星系資料和Planck的CMB溫度微擾分佈、詳細的研究了其中的ISW效應:我們發展了一個定量的方法選取最合適的星系樣本,並且以這個樣本量到其與Planck CMB溫度微擾分佈互相關的訊號後,進一步探討不同的Planck CMB微擾分佈、不同的屏蔽前景方法和不同的互相關頻譜組合方式對ISW訊號所造成的影響。在各種Planck CMB溫度微擾分佈中,我們量測到1.2-2.5σ的ISW效應,而且,我們所量測到的ISW效應的大小與ΛCDM模型(標準宇宙模型)所預測的大小相符。這篇論文以不同於其他暗能量研究的獨立方法,證實了暗能量所造成的宇宙加速膨脹。
Dark energy is one of the biggest puzzles in modern astronomy, and its nature is still unknown. The Integrated Sachs-Wolfe (ISW) effect provides us with a direct approach to dark energy through the temperature anisotropy in the Cosmic Microwave Background (CMB). When passing through the gravitational wells, the CMB photons first become blueshifted while falling in the wells and then become redshifted while climbing out the wells. In a matter-dominated universe, the blueshifts and redshifts compensate each other, and there is no net change on the CMB photons. However, in a dark-energy-dominated universe, the gravitational wells would decay with time due to the accelerated expansion of the Universe caused by dark energy, and hence the redshifts could not cancel the blueshifts anymore, which makes the CMB photons eventually become hotter due to the remained blueshifts.

The ISW effect can be detected through the cross-correlation between the temperature anisotropies of the CMB and the large-scale structures, and in the literature, most significant detections are at $2-3\sigma$ via the cross-correlation of the CMB temperature maps from the Wilkinson Microwave Anisotropy Probe (WMAP) or Planck with various survey of galaxies. The Wide-field Infrared Survey Explorer (WISE) is an ideal data-set of galaxies for the ISW studies, because WISE has a survey area of the whole sky and is deeper than other all-sky surveys. In spite of WISE's great advantage and Planck's improvement over WMAP, few works use WISE with Planck to study the ISW effect. Most previous works, including the one using both WISE and Planck, perform simple analysis on the selection of the galaxy samples, the treatment of foreground contamination, and the statistical inference, while the detection level of the ISW effect varies among papers because of those aspects.

Therefore, using the galaxies from WISE and the CMB temperature maps from Planck, we present a comprehensive analysis of the ISW effect with a careful examination on the galaxy selection, the foreground treatment, and the statistical inference. We optimise the galaxy sample by developing a quantitative method to evaluate the uniformness of a galaxy sample. With the selected WISE galaxy sample, which is more uniform than those in the previous studies, we obtain a positive ISW signal. We analyse the cross-correlation of WISE galaxies with different foreground-cleaned CMB maps in Planck. We further investigate the influence on the ISW signal from different treatments of foreground contamination. We also check the influence on the detection level of the ISW effect from various utilisation of the cross-power spectra used in previous studies. Among the different foreground-cleaned CMB maps in Planck, we obtain $1.2-2.5\sigma$ detections of the ISW effect with amplitudes consistent with the $\Lambda$CDM prediction, providing us with an alternative evidence for the accelerated expansion driven by dark energy.
Acknowledgements ............................... iii Abstract..................................... v TableofContents ................................viii ListofIllustrations ............................... ix ListofTables .................................. xi ChapterI:Introduction ............................. 1 ChapterII:Theory ............................... 4
2.1 TheISWEffect............................. 4
2.2 Cross-correlation............................ 4 ChapterIII:Data ................................ 9 3.1CMB.................................. 9
3.2 WISEGalaxies............................. 10
3.2.1 SelectionandMasking .................... 10
3.2.2 RedshiftDistribution ..................... 15 ChapterIV:AnalysisandResults........................ 16
4.1 GalaxyBias .............................. 16
4.2 WISE-PlanckCross-powerSpectra .................. 18 ChapterV:SignificanceTestandSystematicEffects . . . . . . . . . . . . . . 21
5.1 Statistics ................................ 21
5.2 BinnedPowers............................. 22
5.3 UnbinnedPowers............................ 26 ChapterVI:Discussion ............................. 30
6.1 U73v.s.KQ75y9 ........................... 30
6.2 Uncertainty in the Redshift Distribution and the Galaxy Bias . . . . . 31
6.3 Binnedv.s.Unbinned ......................... 32
6.3.1 Comparison with Previous Work Using WISE through Binned PowerSpectra......................... 33 ChapterVII:Conclusions............................ 35 AppendixA:Computationtools ........................ 36 A.1HEALPix................................ 36
A.2SpICE ................................. 36 A.3CosmoPy................................ 36 A.4CAMB................................. 36
Bibliography .................................. 38
[1] N. Afshordi. “Integrated Sachs-Wolfe effect in cross-correlation: The ob-
server’s manual”. In: Phys. Rev. D 70 (Oct. 2004), p. 083536.
[2] N. Afshordi et al. “Cross-correlation of the cosmic microwave background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources”. In: Phys. Rev. D 69 (Apr. 2004), p. 083524.
[3] L. Anderson et al. “The clustering of galaxies in the SDSS-III Baryon Oscil- lation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample”. In: MNRAS 427 (Dec. 2012), pp. 3435– 3467.
[4] C. L. Bennett et al. “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results”. In: ApJS 208 (Oct. 2013), p. 20.
[5] C. L. Bennett et al. “The Microwave Anisotropy Probe Mission”. In: ApJ 583 (Jan. 2003), pp. 1–23.
[6] M. R. Blanton et al. “Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey”. In: AJ 125 (May 2003), pp. 2348–2360.
[7] S. P. Boughn and R. G. Crittenden. “A detection of the integrated Sachs Wolfe effect”. In: New Astron. Rev. 49 (May 2005), pp. 75–78.
[8] S. P. Boughn and R. G. Crittenden. “Cross Correlation of the Cosmic Mi- crowave Background with Radio Sources: Constraints on an Accelerating Universe”. In: Physical Review Letters 88 (Jan. 2002), p. 021302.
[9] S. P. Boughn et al. “Correlations between the cosmic X-ray and microwave backgrounds: constraints on a cosmological constant”. In: New Astron. 3 (July 1998), pp. 275–291.
[10] S. Boughn and R. Crittenden. “A correlation between the cosmic microwave background and large-scale structure in the Universe”. In: Nature 427 (Jan. 2004), pp. 45–47.
[11] A. Cabré et al. “Cross-correlation of Wilkinson Microwave Anisotropy Probe third-year data and the Sloan Digital Sky Survey DR4 galaxy sur- vey: new evidence for dark energy”. In: MNRAS 372 (Oct. 2006), pp. L23– L27.
[12] J.-F. Cardoso et al. “Component Separation With Flexible Models—Application to Multichannel Astrophysical Observations”. In: IEEE Journal of Selected Topics in Signal Processing 2 (Nov. 2008), pp. 735–746.
[13] A. Challinor. “Microwave background anisotropies from gravitational waves: the 1 + 3 covariant approach”. In: Classical and Quantum Gravity 17 (Feb. 2000), pp. 871–889.
[14] A. Challinor. “The Covariant Perturbative Approach to Cosmic Microwave Background Anisotropies”. In: General Relativity and Gravitation 32 (June 2000), pp. 1059–1074.
[15] A. Challinor and A. Lasenby. “Cosmic Microwave Background Anisotropies in the Cold Dark Matter Model: A Covariant and Gauge-invariant Ap- proach”. In: ApJ 513 (Mar. 1999), pp. 1–22.
[16] R. G. Crittenden and N. Turok. “Looking for a Cosmological Constant with the Rees-Sciama Effect”. In: Physical Review Letters 76 (Jan. 1996), pp. 575–578.
[17] P. de Bernardis et al. “A flat Universe from high-resolution maps of the cos- mic microwave background radiation”. In: Nature 404 (Apr. 2000), pp. 955– 959.
[18] J. Delabrouille et al. “A full sky, low foreground, high resolution CMB map from WMAP”. In: A&A 493 (Jan. 2009), pp. 835–857.
[19] G. Efstathiou. “Myths and truths concerning estimation of power spectra: the case for a hybrid estimator”. In: MNRAS 349 (Apr. 2004), pp. 603–626.
[20] D. J. Eisenstein et al. “Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample”. In: AJ 122 (Nov. 2001), pp. 2267–2280.
[21] H. K. Eriksen et al. “Cosmic Microwave Background Component Separation by Parameter Estimation”. In: ApJ 641 (Apr. 2006), pp. 665–682.
[22] H. K. Eriksen et al. “Joint Bayesian Component Separation and CMB Power Spectrum Estimation”. In: ApJ 676 (Mar. 2008), pp. 10–32.
[23] R. Fernández-Cobos et al. “Multiresolution internal template cleaning: an application to the Wilkinson Microwave Anisotropy Probe 7-yr polarization data”. In: MNRAS 420 (Mar. 2012), pp. 2162–2169.
[24] S. Ferraro et al. “WISE measurement of the integrated Sachs-Wolfe effect”. In: Phys. Rev. D 91.8 (Apr. 2015), p. 083533.
[25] S. Flender et al. “The stacked ISW signal of rare superstructures in ΛCDM”. In: J. Cosmology Astropart. Phys. 2 (Feb. 2013), p. 013.
[26] P. Fosalba and E. Gaztañaga. “Measurement of the gravitational potential evolution from the cross-correlation between WMAP and the APM Galaxy Survey”. In: MNRAS 350 (May 2004), pp. L37–L41.
[27] P. Fosalba et al. “Detection of the Integrated Sachs-Wolfe and Sunyaev- Zeldovich Effects from the Cosmic Microwave Background-Galaxy Corre- lation”. In: ApJ 597 (Nov. 2003), pp. L89–L92.
[28] C. L. Francis and J. A. Peacock. “Integrated Sachs-Wolfe measurements with photometric redshift surveys: 2MASS results and future prospects”. In: MNRAS 406 (July 2010), pp. 2–13.
[29] W. L. Freedman et al. “Carnegie Hubble Program: A Mid-infrared Calibra- tion of the Hubble Constant”. In: ApJ 758 (Oct. 2012), p. 24.
[30] M. Fukugita et al. “Morphological Classification of Galaxies Using Simple Photometric Parameters”. In: MNRAS 264 (Oct. 1993), p. 832.
[31] T. Gebbie and G. F. R. Ellis. “1+3 covariant cosmic microwave background anisotropies. I. Algebraic relations for mode and multipole expansions.” In: Annals of Physics 282 (June 2000), pp. 285–320.
[32] T. Giannantonio et al. “Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications”. In: Phys. Rev. D 77 (June 2008), p. 123520.
[33] T. Giannantonio et al. “High redshift detection of the integrated Sachs-Wolfe effect”. In: Phys. Rev. D 74.6 (Sept. 2006), p. 063520.
[34] T. Giannantonio et al. “The significance of the integrated Sachs-Wolfe effect revisited”. In: MNRAS 426 (Nov. 2012), pp. 2581–2599.
[35] K. M. Górski et al. “HEALPix: A Framework for High-Resolution Dis- cretization and Fast Analysis of Data Distributed on the Sphere”. In: ApJ 622 (Apr. 2005), pp. 759–771.
[36] T. Goto et al. “Cross-correlation of WISE galaxies with the cosmic mi- crowave background”. In: MNRAS 422 (May 2012), p. L77.
[37] B. R. Granett et al. “An Imprint of Superstructures on the Microwave Back- ground due to the Integrated Sachs-Wolfe Effect”. In: ApJ 683 (Aug. 2008), p. L99.
[38] J. E. Gunn et al. “The Sloan Digital Sky Survey Photometric Camera”. In: AJ 116 (Dec. 1998), pp. 3040–3081.
[39] L. Guzzo et al. “A test of the nature of cosmic acceleration using galaxy redshift distortions”. In: Nature 451 (Jan. 2008), pp. 541–544.
[40] C. Hernández-Monteagudo. “Implementation of a Fourier matched filter in CMB analyses. Application to ISW studies”. In: A&A 490 (Oct. 2008), pp. 15–23.
[41] C. Hernández-Monteagudo. “Revisiting the WMAP-NVSS angular cross correlation. A skeptic’s view”. In: A&A 520 (Sept. 2010), A101.
[42] C. Hernández-Monteagudo et al. “The SDSS-III Baryonic Oscillation Spec- troscopic Survey: constraints on the integrated Sachs-Wolfe effect”. In: MN- RAS 438 (Feb. 2014), pp. 1724–1740.
[43] C. Heymans et al. “CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments”. In: MNRAS 432 (July 2013), pp. 2433–2453.
[44] G. Hinshaw et al. “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results”. In: ApJS 208 (2013), p. 19.
[45] C. M. Hirata et al. “Cross-correlation of CMB with large-scale structure: Weak gravitational lensing”. In: Phys. Rev. D 70 (Nov. 2004), p. 103501.
[46] S. Ho et al. “Correlation of CMB with large-scale structure. I. Integrated Sachs-Wolfe tomography and cosmological implications”. In: Phys. Rev. D 78 (Aug. 2008), p. 043519.
[47] D. W. Hogg et al. “A Photometricity and Extinction Monitor at the Apache Point Observatory”. In: AJ 122 (Oct. 2001), pp. 2129–2138.
[48] K. M. Huffenberger et al. “Sunyaev-Zeldovich effect in WMAP and its effect on cosmological parameters”. In: Phys. Rev. D 70 (Sept. 2004), p. 063002.
[49] S. Ilić et al. “Detecting the integrated Sachs-Wolfe effect with stacked voids”. In: A&A 556 (Aug. 2013), A51.
[50] T. H. Jarrett et al. “2MASS Extended Source Catalog: Overview and Algo- rithms”. In: AJ 119 (May 2000), pp. 2498–2531.
[51] R. Kneissl et al. “Search for correlations between COBE DMR and ROSAT PSPC all-sky survey data.” In: A&A 320 (Apr. 1997), pp. 685–695.
[52] L. A. Kofman and A. A. Starobinskii. “Effect of the Cosmological Con- stant on Largescale Anisotropies in the Microwave Background”. In: Soviet Astronomy Letters 11 (Sept. 1985), pp. 271–274.
[53] A. Kovács et al. “Cross-correlation of WMAP7 and the WISE full data release”. In: MNRAS 431 (Apr. 2013), pp. L28–L32.
[54] S. M. Leach et al. “Component separation methods for the PLANCK mis- sion”. In: A&A 491 (Nov. 2008), pp. 597–615.
[55] A. Lewis et al. “Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models”. In: ApJ 538 (Aug. 2000), pp. 473–476.
[56] D. N. Limber. “The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II.” In: ApJ 119 (May 1954), p. 655.
[57] J. Liske et al. “Galaxy And Mass Assembly (GAMA): end of survey report and data release 2”. In: MNRAS 452 (Sept. 2015), pp. 2087–2126.
[58] M. López-Corredoira et al. “Absence of significant cross-correlation be- tween WMAP and SDSS”. In: A&A 513, A3 (Apr. 2010), A3.
[59] R. H. Lupton et al. “A Modified Magnitude System that Produces Well- Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements”. In: AJ 118 (Sept. 1999), pp. 1406–1410.
[60] R. Lupton et al. “The SDSS Imaging Pipelines”. In: Astronomical Data Analysis Software and Systems X. Ed. by F. R. Harnden Jr. et al. Vol. 238. Astronomical Society of the Pacific Conference Series. 2001, p. 269.
[61] R. Mandelbaum et al. “Cosmological parameter constraints from galaxy- galaxy lensing and galaxy clustering with the SDSS DR7”. In: MNRAS 432 (June 2013), pp. 1544–1575.
[62] E. Martínez-González et al. “Cosmic microwave background power spec- trum estimation and map reconstruction with the expectation-maximization algorithm”. In: MNRAS 345 (Nov. 2003), pp. 1101–1109.
[63] J. D. McEwen et al. “Detection of the integrated Sachs-Wolfe effect and cor- responding dark energy constraints made with directional spherical wavelets”. In: MNRAS 376 (Apr. 2007), pp. 1211–1226.
[64] J. D. McEwen et al. “Probing dark energy with steerable wavelets through correlation of WMAP and NVSS local morphological measures”. In: MN- RAS 384 (Mar. 2008), pp. 1289–1300.
[65] J. Muir and D. Huterer. “Peeling off the late Universe: Reconstructing the ISW map with galaxy surveys”. In: ArXiv e-prints (Mar. 2016). arXiv: 1603.06586.
[66] A. J. Nishizawa. “The integrated Sachs-Wolfe effect and the Rees-Sciama effect”. In: Progress of Theoretical and Experimental Physics 2014 (June 2014), 06B110.
[67] M. R. Nolta et al. “First Year Wilkinson Microwave Anisotropy Probe Ob- servations: Dark Energy Induced Correlation with Radio Sources”. In: ApJ 608 (June 2004), pp. 10–15.
[68] N. Padmanabhan et al. “Correlating the CMB with luminous red galaxies: The integrated Sachs-Wolfe effect”. In: Phys. Rev. D 72.4 (Aug. 2005), p. 043525.
[69] N. Padmanabhan et al. “Mining weak lensing surveys”. In: New Astron. 8 (Aug. 2003), pp. 581–603.
[70] H. V. Peiris and D. N. Spergel. “Cross-Correlating the Sloan Digital Sky Survey with the Microwave Sky”. In: ApJ 540 (Sept. 2000), pp. 605–613.
[71] S. Perlmutter et al. “Measurements of Ω and Λ from 42 High-Redshift Supernovae”. In: ApJ 517 (1999), pp. 565–586.
[72] J. R. Pier et al. “Astrometric Calibration of the Sloan Digital Sky Survey”. In: AJ 125 (Mar. 2003), pp. 1559–1579.
[73] D. Pietrobon et al. “Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3year and the NRAO VLA sky survey data: New results and constraints on dark energy”. In: Phys. Rev. D 74.4 (Aug. 2006), p. 043524.
[74] Planck Collaboration et al. “Planck 2013 results. XII. Diffuse component separation”. In: A&A 571 (Nov. 2014), A12.
[75] Planck Collaboration et al. “Planck 2013 results. XIX. The integrated Sachs- Wolfe effect”. In: A&A 571 (Nov. 2014), A19.
[76] Planck Collaboration et al. “Planck 2015 results. I. Overview of products and scientific results”. In: ArXiv e-prints (Feb. 2015). arXiv: 1502.01582.
[77] Planck Collaboration et al. “Planck 2015 results. IX. Diffuse component separation: CMB maps”. In: ArXiv e-prints (Feb. 2015). arXiv: 1502. 05956.
[78] Planck Collaboration et al. “Planck 2015 results. XIII. Cosmological pa- rameters”. In: ArXiv e-prints (2015). arXiv: 1502.01589.
[79] Planck Collaboration et al. “Planck 2015 results. XV. Gravitational lensing”. In: ArXiv e-prints (Feb. 2015). arXiv: 1502.01591.
[80] Planck Collaboration et al. “Planck 2015 results. XXI. The integrated Sachs- Wolfe effect”. In: ArXiv e-prints (Feb. 2015). arXiv: 1502.01595.
[81] Planck Collaboration et al. “Planck intermediate results. XII: Diffuse Galac- tic components in the Gould Belt system”. In: A&A 557 (Sept. 2013), A53.
[82] A. Raccanelli et al. “A reassessment of the evidence of the Integrated Sachs- Wolfe effect through the WMAP-NVSS correlation”. In: MNRAS 386 (June 2008), pp. 2161–2166.
[83] A. Rassat et al. “Cross-correlation of 2MASS and WMAP 3: implications for the integrated Sachs-Wolfe effect”. In: MNRAS 377 (May 2007), pp. 1085– 1094.
[84] M. J. Rees and D. W. Sciama. “Large-scale Density Inhomogeneities in the Universe”. In: Nature 217 (Feb. 1968), pp. 511–516.
[85] G. T. Richards et al. “Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample”. In: AJ 123 (June 2002), pp. 2945–2975.
[86] A. G. Riess et al. “Observational Evidence from Supernovae for an Acceler- ating Universe and a Cosmological Constant”. In: AJ 116 (1998), pp. 1009– 1038.
[87] R. K. Sachs and A. M. Wolfe. “Perturbations of a Cosmological Model and Angular Variations of the Microwave Background”. In: ApJ 147 (Jan. 1967), p. 73.
[88] U. Sawangwit et al. “Cross-correlating WMAP5 with 1.5 million LRGs: a new test for the ISW effect”. In: MNRAS 402 (Mar. 2010), pp. 2228–2244.
[89] F. Schiavon et al. “An optimal estimator for the CMB-LSS angular power spectrum and its application to WMAP and NVSS data”. In: MNRAS 427 (Dec. 2012), pp. 3044–3054.
[90] R. Scranton et al. “Physical Evidence for Dark Energy”. In: ArXiv Astro- physics e-prints (July 2003). eprint: astro-ph/0307335.
[91] A. J. Shajib and E. L. Wright. “Measurement of the integrated Sachs-Wolfe effect using the AllWISE data release”. In: ArXiv e-prints (Apr. 2016). arXiv: 1604.03939.
[92] J. A. Smith et al. “The u’g’r’i’z’ Standard-Star System”. In: AJ 123 (Apr. 2002), pp. 2121–2144.
[93] R. E. Smith et al. “Stable clustering, the halo model and non-linear cosmo- logical power spectra”. In: MNRAS 341 (June 2003), pp. 1311–1332.
[94] C. Stoughton et al. “Sloan Digital Sky Survey: Early Data Release”. In: AJ 123 (Jan. 2002), pp. 485–548.
[95] M. A. Strauss et al. “Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample”. In: AJ 124 (Sept. 2002), pp. 1810–1824.
[96] M. Sullivan et al. “SNLS3: Constraints on Dark Energy Combining the Supernova Legacy Survey Three-year Data with Other Probes”. In: ApJ 737 (Aug. 2011), p. 102.
[97] S. H. Suyu et al. “Cosmology from Gravitational Lens Time Delays and Planck Data”. In: ApJ 788 (2014).
[98] S. H. Suyu et al. “Two Accurate Time-delay Distances from Strong Lensing: Implications for Cosmology”. In: ApJ 766 (Apr. 2013), p. 70.
[99] I. Szapudi et al. “Fast Analysis of Inhomogenous Megapixel Cosmic Mi- crowave Background Maps”. In: ApJ 561 (Nov. 2001), pp. L11–L14.
[100] I. Szapudi et al. “Fast Cosmic Microwave Background Analyses via Corre- lation Functions”. In: ApJ 548 (Feb. 2001), pp. L115–L118.
[101] I. Szapudi et al. “Fast Edge-corrected Measurement of the Two-Point Corre- lation Function and the Power Spectrum”. In: ApJ 631 (Sept. 2005), pp. L1– L4.
[102] R. Takahashi et al. “Revising the Halofit Model for the Nonlinear Matter Power Spectrum”. In: ApJ 761 (Dec. 2012), p. 152.
[103] P. Vielva et al. “Cross-correlation of the cosmic microwave background and radio galaxies in real, harmonic and wavelet spaces: detection of the integrated Sachs-Wolfe effect and dark energy constraints”. In: MNRAS 365 (Jan. 2006), pp. 891–901.
[104] E. L. Wright et al. “The Wide-field Infrared Survey Explorer (WISE): Mis- sion Description and Initial On-orbit Performance”. In: AJ 140 (Dec. 2010), pp. 1868–1881.
[105] J.-Q. Xia et al. “The high redshift Integrated Sachs-Wolfe effect”. In: J. Cos-
mology Astropart. Phys. 9 (Sept. 2009), p. 003.
[106] D. G. York et al. “The Sloan Digital Sky Survey: Technical Summary”. In: AJ 120 (Sept. 2000), pp. 1579–1587.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *