|
[1] N. Afshordi. “Integrated Sachs-Wolfe effect in cross-correlation: The ob- server’s manual”. In: Phys. Rev. D 70 (Oct. 2004), p. 083536. [2] N. Afshordi et al. “Cross-correlation of the cosmic microwave background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources”. In: Phys. Rev. D 69 (Apr. 2004), p. 083524. [3] L. Anderson et al. “The clustering of galaxies in the SDSS-III Baryon Oscil- lation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample”. In: MNRAS 427 (Dec. 2012), pp. 3435– 3467. [4] C. L. Bennett et al. “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results”. In: ApJS 208 (Oct. 2013), p. 20. [5] C. L. Bennett et al. “The Microwave Anisotropy Probe Mission”. In: ApJ 583 (Jan. 2003), pp. 1–23. [6] M. R. Blanton et al. “Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey”. In: AJ 125 (May 2003), pp. 2348–2360. [7] S. P. Boughn and R. G. Crittenden. “A detection of the integrated Sachs Wolfe effect”. In: New Astron. Rev. 49 (May 2005), pp. 75–78. [8] S. P. Boughn and R. G. Crittenden. “Cross Correlation of the Cosmic Mi- crowave Background with Radio Sources: Constraints on an Accelerating Universe”. In: Physical Review Letters 88 (Jan. 2002), p. 021302. [9] S. P. Boughn et al. “Correlations between the cosmic X-ray and microwave backgrounds: constraints on a cosmological constant”. In: New Astron. 3 (July 1998), pp. 275–291. [10] S. Boughn and R. Crittenden. “A correlation between the cosmic microwave background and large-scale structure in the Universe”. In: Nature 427 (Jan. 2004), pp. 45–47. [11] A. Cabré et al. “Cross-correlation of Wilkinson Microwave Anisotropy Probe third-year data and the Sloan Digital Sky Survey DR4 galaxy sur- vey: new evidence for dark energy”. In: MNRAS 372 (Oct. 2006), pp. L23– L27. [12] J.-F. Cardoso et al. “Component Separation With Flexible Models—Application to Multichannel Astrophysical Observations”. In: IEEE Journal of Selected Topics in Signal Processing 2 (Nov. 2008), pp. 735–746. [13] A. Challinor. “Microwave background anisotropies from gravitational waves: the 1 + 3 covariant approach”. In: Classical and Quantum Gravity 17 (Feb. 2000), pp. 871–889. [14] A. Challinor. “The Covariant Perturbative Approach to Cosmic Microwave Background Anisotropies”. In: General Relativity and Gravitation 32 (June 2000), pp. 1059–1074. [15] A. Challinor and A. Lasenby. “Cosmic Microwave Background Anisotropies in the Cold Dark Matter Model: A Covariant and Gauge-invariant Ap- proach”. In: ApJ 513 (Mar. 1999), pp. 1–22. [16] R. G. Crittenden and N. Turok. “Looking for a Cosmological Constant with the Rees-Sciama Effect”. In: Physical Review Letters 76 (Jan. 1996), pp. 575–578. [17] P. de Bernardis et al. “A flat Universe from high-resolution maps of the cos- mic microwave background radiation”. In: Nature 404 (Apr. 2000), pp. 955– 959. [18] J. Delabrouille et al. “A full sky, low foreground, high resolution CMB map from WMAP”. In: A&A 493 (Jan. 2009), pp. 835–857. [19] G. Efstathiou. “Myths and truths concerning estimation of power spectra: the case for a hybrid estimator”. In: MNRAS 349 (Apr. 2004), pp. 603–626. [20] D. J. Eisenstein et al. “Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample”. In: AJ 122 (Nov. 2001), pp. 2267–2280. [21] H. K. Eriksen et al. “Cosmic Microwave Background Component Separation by Parameter Estimation”. In: ApJ 641 (Apr. 2006), pp. 665–682. [22] H. K. Eriksen et al. “Joint Bayesian Component Separation and CMB Power Spectrum Estimation”. In: ApJ 676 (Mar. 2008), pp. 10–32. [23] R. Fernández-Cobos et al. “Multiresolution internal template cleaning: an application to the Wilkinson Microwave Anisotropy Probe 7-yr polarization data”. In: MNRAS 420 (Mar. 2012), pp. 2162–2169. [24] S. Ferraro et al. “WISE measurement of the integrated Sachs-Wolfe effect”. In: Phys. Rev. D 91.8 (Apr. 2015), p. 083533. [25] S. Flender et al. “The stacked ISW signal of rare superstructures in ΛCDM”. In: J. Cosmology Astropart. Phys. 2 (Feb. 2013), p. 013. [26] P. Fosalba and E. Gaztañaga. “Measurement of the gravitational potential evolution from the cross-correlation between WMAP and the APM Galaxy Survey”. In: MNRAS 350 (May 2004), pp. L37–L41. [27] P. Fosalba et al. “Detection of the Integrated Sachs-Wolfe and Sunyaev- Zeldovich Effects from the Cosmic Microwave Background-Galaxy Corre- lation”. In: ApJ 597 (Nov. 2003), pp. L89–L92. [28] C. L. Francis and J. A. Peacock. “Integrated Sachs-Wolfe measurements with photometric redshift surveys: 2MASS results and future prospects”. In: MNRAS 406 (July 2010), pp. 2–13. [29] W. L. Freedman et al. “Carnegie Hubble Program: A Mid-infrared Calibra- tion of the Hubble Constant”. In: ApJ 758 (Oct. 2012), p. 24. [30] M. Fukugita et al. “Morphological Classification of Galaxies Using Simple Photometric Parameters”. In: MNRAS 264 (Oct. 1993), p. 832. [31] T. Gebbie and G. F. R. Ellis. “1+3 covariant cosmic microwave background anisotropies. I. Algebraic relations for mode and multipole expansions.” In: Annals of Physics 282 (June 2000), pp. 285–320. [32] T. Giannantonio et al. “Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications”. In: Phys. Rev. D 77 (June 2008), p. 123520. [33] T. Giannantonio et al. “High redshift detection of the integrated Sachs-Wolfe effect”. In: Phys. Rev. D 74.6 (Sept. 2006), p. 063520. [34] T. Giannantonio et al. “The significance of the integrated Sachs-Wolfe effect revisited”. In: MNRAS 426 (Nov. 2012), pp. 2581–2599. [35] K. M. Górski et al. “HEALPix: A Framework for High-Resolution Dis- cretization and Fast Analysis of Data Distributed on the Sphere”. In: ApJ 622 (Apr. 2005), pp. 759–771. [36] T. Goto et al. “Cross-correlation of WISE galaxies with the cosmic mi- crowave background”. In: MNRAS 422 (May 2012), p. L77. [37] B. R. Granett et al. “An Imprint of Superstructures on the Microwave Back- ground due to the Integrated Sachs-Wolfe Effect”. In: ApJ 683 (Aug. 2008), p. L99. [38] J. E. Gunn et al. “The Sloan Digital Sky Survey Photometric Camera”. In: AJ 116 (Dec. 1998), pp. 3040–3081. [39] L. Guzzo et al. “A test of the nature of cosmic acceleration using galaxy redshift distortions”. In: Nature 451 (Jan. 2008), pp. 541–544. [40] C. Hernández-Monteagudo. “Implementation of a Fourier matched filter in CMB analyses. Application to ISW studies”. In: A&A 490 (Oct. 2008), pp. 15–23. [41] C. Hernández-Monteagudo. “Revisiting the WMAP-NVSS angular cross correlation. A skeptic’s view”. In: A&A 520 (Sept. 2010), A101. [42] C. Hernández-Monteagudo et al. “The SDSS-III Baryonic Oscillation Spec- troscopic Survey: constraints on the integrated Sachs-Wolfe effect”. In: MN- RAS 438 (Feb. 2014), pp. 1724–1740. [43] C. Heymans et al. “CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments”. In: MNRAS 432 (July 2013), pp. 2433–2453. [44] G. Hinshaw et al. “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results”. In: ApJS 208 (2013), p. 19. [45] C. M. Hirata et al. “Cross-correlation of CMB with large-scale structure: Weak gravitational lensing”. In: Phys. Rev. D 70 (Nov. 2004), p. 103501. [46] S. Ho et al. “Correlation of CMB with large-scale structure. I. Integrated Sachs-Wolfe tomography and cosmological implications”. In: Phys. Rev. D 78 (Aug. 2008), p. 043519. [47] D. W. Hogg et al. “A Photometricity and Extinction Monitor at the Apache Point Observatory”. In: AJ 122 (Oct. 2001), pp. 2129–2138. [48] K. M. Huffenberger et al. “Sunyaev-Zeldovich effect in WMAP and its effect on cosmological parameters”. In: Phys. Rev. D 70 (Sept. 2004), p. 063002. [49] S. Ilić et al. “Detecting the integrated Sachs-Wolfe effect with stacked voids”. In: A&A 556 (Aug. 2013), A51. [50] T. H. Jarrett et al. “2MASS Extended Source Catalog: Overview and Algo- rithms”. In: AJ 119 (May 2000), pp. 2498–2531. [51] R. Kneissl et al. “Search for correlations between COBE DMR and ROSAT PSPC all-sky survey data.” In: A&A 320 (Apr. 1997), pp. 685–695. [52] L. A. Kofman and A. A. Starobinskii. “Effect of the Cosmological Con- stant on Largescale Anisotropies in the Microwave Background”. In: Soviet Astronomy Letters 11 (Sept. 1985), pp. 271–274. [53] A. Kovács et al. “Cross-correlation of WMAP7 and the WISE full data release”. In: MNRAS 431 (Apr. 2013), pp. L28–L32. [54] S. M. Leach et al. “Component separation methods for the PLANCK mis- sion”. In: A&A 491 (Nov. 2008), pp. 597–615. [55] A. Lewis et al. “Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models”. In: ApJ 538 (Aug. 2000), pp. 473–476. [56] D. N. Limber. “The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II.” In: ApJ 119 (May 1954), p. 655. [57] J. Liske et al. “Galaxy And Mass Assembly (GAMA): end of survey report and data release 2”. In: MNRAS 452 (Sept. 2015), pp. 2087–2126. [58] M. López-Corredoira et al. “Absence of significant cross-correlation be- tween WMAP and SDSS”. In: A&A 513, A3 (Apr. 2010), A3. [59] R. H. Lupton et al. “A Modified Magnitude System that Produces Well- Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements”. In: AJ 118 (Sept. 1999), pp. 1406–1410. [60] R. Lupton et al. “The SDSS Imaging Pipelines”. In: Astronomical Data Analysis Software and Systems X. Ed. by F. R. Harnden Jr. et al. Vol. 238. Astronomical Society of the Pacific Conference Series. 2001, p. 269. [61] R. Mandelbaum et al. “Cosmological parameter constraints from galaxy- galaxy lensing and galaxy clustering with the SDSS DR7”. In: MNRAS 432 (June 2013), pp. 1544–1575. [62] E. Martínez-González et al. “Cosmic microwave background power spec- trum estimation and map reconstruction with the expectation-maximization algorithm”. In: MNRAS 345 (Nov. 2003), pp. 1101–1109. [63] J. D. McEwen et al. “Detection of the integrated Sachs-Wolfe effect and cor- responding dark energy constraints made with directional spherical wavelets”. In: MNRAS 376 (Apr. 2007), pp. 1211–1226. [64] J. D. McEwen et al. “Probing dark energy with steerable wavelets through correlation of WMAP and NVSS local morphological measures”. In: MN- RAS 384 (Mar. 2008), pp. 1289–1300. [65] J. Muir and D. Huterer. “Peeling off the late Universe: Reconstructing the ISW map with galaxy surveys”. In: ArXiv e-prints (Mar. 2016). arXiv: 1603.06586. [66] A. J. Nishizawa. “The integrated Sachs-Wolfe effect and the Rees-Sciama effect”. In: Progress of Theoretical and Experimental Physics 2014 (June 2014), 06B110. [67] M. R. Nolta et al. “First Year Wilkinson Microwave Anisotropy Probe Ob- servations: Dark Energy Induced Correlation with Radio Sources”. In: ApJ 608 (June 2004), pp. 10–15. [68] N. Padmanabhan et al. “Correlating the CMB with luminous red galaxies: The integrated Sachs-Wolfe effect”. In: Phys. Rev. D 72.4 (Aug. 2005), p. 043525. [69] N. Padmanabhan et al. “Mining weak lensing surveys”. In: New Astron. 8 (Aug. 2003), pp. 581–603. [70] H. V. Peiris and D. N. Spergel. “Cross-Correlating the Sloan Digital Sky Survey with the Microwave Sky”. In: ApJ 540 (Sept. 2000), pp. 605–613. [71] S. Perlmutter et al. “Measurements of Ω and Λ from 42 High-Redshift Supernovae”. In: ApJ 517 (1999), pp. 565–586. [72] J. R. Pier et al. “Astrometric Calibration of the Sloan Digital Sky Survey”. In: AJ 125 (Mar. 2003), pp. 1559–1579. [73] D. Pietrobon et al. “Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3year and the NRAO VLA sky survey data: New results and constraints on dark energy”. In: Phys. Rev. D 74.4 (Aug. 2006), p. 043524. [74] Planck Collaboration et al. “Planck 2013 results. XII. Diffuse component separation”. In: A&A 571 (Nov. 2014), A12. [75] Planck Collaboration et al. “Planck 2013 results. XIX. The integrated Sachs- Wolfe effect”. In: A&A 571 (Nov. 2014), A19. [76] Planck Collaboration et al. “Planck 2015 results. I. Overview of products and scientific results”. In: ArXiv e-prints (Feb. 2015). arXiv: 1502.01582. [77] Planck Collaboration et al. “Planck 2015 results. IX. Diffuse component separation: CMB maps”. In: ArXiv e-prints (Feb. 2015). arXiv: 1502. 05956. [78] Planck Collaboration et al. “Planck 2015 results. XIII. Cosmological pa- rameters”. In: ArXiv e-prints (2015). arXiv: 1502.01589. [79] Planck Collaboration et al. “Planck 2015 results. XV. Gravitational lensing”. In: ArXiv e-prints (Feb. 2015). arXiv: 1502.01591. [80] Planck Collaboration et al. “Planck 2015 results. XXI. The integrated Sachs- Wolfe effect”. In: ArXiv e-prints (Feb. 2015). arXiv: 1502.01595. [81] Planck Collaboration et al. “Planck intermediate results. XII: Diffuse Galac- tic components in the Gould Belt system”. In: A&A 557 (Sept. 2013), A53. [82] A. Raccanelli et al. “A reassessment of the evidence of the Integrated Sachs- Wolfe effect through the WMAP-NVSS correlation”. In: MNRAS 386 (June 2008), pp. 2161–2166. [83] A. Rassat et al. “Cross-correlation of 2MASS and WMAP 3: implications for the integrated Sachs-Wolfe effect”. In: MNRAS 377 (May 2007), pp. 1085– 1094. [84] M. J. Rees and D. W. Sciama. “Large-scale Density Inhomogeneities in the Universe”. In: Nature 217 (Feb. 1968), pp. 511–516. [85] G. T. Richards et al. “Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample”. In: AJ 123 (June 2002), pp. 2945–2975. [86] A. G. Riess et al. “Observational Evidence from Supernovae for an Acceler- ating Universe and a Cosmological Constant”. In: AJ 116 (1998), pp. 1009– 1038. [87] R. K. Sachs and A. M. Wolfe. “Perturbations of a Cosmological Model and Angular Variations of the Microwave Background”. In: ApJ 147 (Jan. 1967), p. 73. [88] U. Sawangwit et al. “Cross-correlating WMAP5 with 1.5 million LRGs: a new test for the ISW effect”. In: MNRAS 402 (Mar. 2010), pp. 2228–2244. [89] F. Schiavon et al. “An optimal estimator for the CMB-LSS angular power spectrum and its application to WMAP and NVSS data”. In: MNRAS 427 (Dec. 2012), pp. 3044–3054. [90] R. Scranton et al. “Physical Evidence for Dark Energy”. In: ArXiv Astro- physics e-prints (July 2003). eprint: astro-ph/0307335. [91] A. J. Shajib and E. L. Wright. “Measurement of the integrated Sachs-Wolfe effect using the AllWISE data release”. In: ArXiv e-prints (Apr. 2016). arXiv: 1604.03939. [92] J. A. Smith et al. “The u’g’r’i’z’ Standard-Star System”. In: AJ 123 (Apr. 2002), pp. 2121–2144. [93] R. E. Smith et al. “Stable clustering, the halo model and non-linear cosmo- logical power spectra”. In: MNRAS 341 (June 2003), pp. 1311–1332. [94] C. Stoughton et al. “Sloan Digital Sky Survey: Early Data Release”. In: AJ 123 (Jan. 2002), pp. 485–548. [95] M. A. Strauss et al. “Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample”. In: AJ 124 (Sept. 2002), pp. 1810–1824. [96] M. Sullivan et al. “SNLS3: Constraints on Dark Energy Combining the Supernova Legacy Survey Three-year Data with Other Probes”. In: ApJ 737 (Aug. 2011), p. 102. [97] S. H. Suyu et al. “Cosmology from Gravitational Lens Time Delays and Planck Data”. In: ApJ 788 (2014). [98] S. H. Suyu et al. “Two Accurate Time-delay Distances from Strong Lensing: Implications for Cosmology”. In: ApJ 766 (Apr. 2013), p. 70. [99] I. Szapudi et al. “Fast Analysis of Inhomogenous Megapixel Cosmic Mi- crowave Background Maps”. In: ApJ 561 (Nov. 2001), pp. L11–L14. [100] I. Szapudi et al. “Fast Cosmic Microwave Background Analyses via Corre- lation Functions”. In: ApJ 548 (Feb. 2001), pp. L115–L118. [101] I. Szapudi et al. “Fast Edge-corrected Measurement of the Two-Point Corre- lation Function and the Power Spectrum”. In: ApJ 631 (Sept. 2005), pp. L1– L4. [102] R. Takahashi et al. “Revising the Halofit Model for the Nonlinear Matter Power Spectrum”. In: ApJ 761 (Dec. 2012), p. 152. [103] P. Vielva et al. “Cross-correlation of the cosmic microwave background and radio galaxies in real, harmonic and wavelet spaces: detection of the integrated Sachs-Wolfe effect and dark energy constraints”. In: MNRAS 365 (Jan. 2006), pp. 891–901. [104] E. L. Wright et al. “The Wide-field Infrared Survey Explorer (WISE): Mis- sion Description and Initial On-orbit Performance”. In: AJ 140 (Dec. 2010), pp. 1868–1881. [105] J.-Q. Xia et al. “The high redshift Integrated Sachs-Wolfe effect”. In: J. Cos- mology Astropart. Phys. 9 (Sept. 2009), p. 003. [106] D. G. York et al. “The Sloan Digital Sky Survey: Technical Summary”. In: AJ 120 (Sept. 2000), pp. 1579–1587. |