帳號:guest(3.145.8.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳映瑞
作者(外文):Chen, Ying Jui
論文名稱(中文):製備具一系列形狀控制的氧化銀晶體並探討晶面效應對其光催化活性與電性的影響
論文名稱(外文):Synthesis of Diverse Ag2O Crystals for Facet-Dependent Photocatalytic Activity and Electrical Conductivity Measurements
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):江昀緯
簡紋濱
口試委員(外文):Chiang, Yun-Wei
Jian, Wen-Bin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023702
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:52
中文關鍵詞:氧化銀晶面效應光催化活性導電性量測
外文關鍵詞:Silver oxideFacet-dependent propertiesPhotocatalytic activityElectrical conductivity measurement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:48
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
論文摘要
氧化銀具有與氧化亞銅相同的晶體結構,而氧化亞銅之晶面效應已經由不同形狀之單一晶面氧化亞銅藉由光催化、表面化學侵蝕以及導電性等實驗中被發現與證實。因此,在本論文研究中,我們在水溶液的系統下,簡單的調控硝酸銨、氫氧化鈉與硝酸銀之間的莫爾比例,藉此控制反應速率,在室溫下簡易且快速的合成一系列具立方體、菱形12面體以及八面體等不同形狀的氧化銀晶體,並進行晶面效應的實驗分析。各式氧化銀晶體的形狀可在場發式電子顯微鏡下清楚的被觀察到,透過粉末式X光繞射、X射線光電子能譜分析與固態UV-vis光譜的分析,可了解氧化銀晶體的成分與表面特性。在光催化降解甲基橙有機染料的實驗中發現,以立方體氧化銀當催化劑的效果最佳,在90分鐘內降解了85%,次之是八面體,最後是菱形十二面體只降解了15%。而利用電子自旋共振分析,我們偵測到光催化下產生的自由基並發現光照氧化銀晶體時所產生的自由基濃度與光催化效率的結果相符。雖然在光催化反應後氧化銀晶體形狀發生崩解的情況,但藉由X射線光電子能譜的分析我們可以確定在此催化過程中沒有金屬銀的產生。在氧化銀單一晶體的導電性分析,我們發現不同晶面的氧化銀,會得到截然不同的導電性,八面體導電性最佳,立方體次之,菱形十二面體不導電,此結果與氧化亞銅晶體一致。
Abstract
Sub- to micrometer-sized Ag2O cubes, great rhombicuboctahedra, cuboctahedra, corner-truncated octahedra, octahedra, and rhombic dodecahedra have been synthesized at room temperature using simple molar ratios of NH4NO3, NaOH, and AgNO3 solutions with a short reaction time. In addition, tuning the concentration of NH3 in the solution can provide more particle morphologies including edge- and corner-truncated cubes, small rhombicuboctahedra, and edge-truncated octahedra to enrich Ag2O shape diversity. X-ray photoelectron spectroscopy (XPS) spectra indicate surface composition of various crystals as pure Ag2O. Diffuse reflectance spectra have been used to determine the band gap of Ag2O cubes. Ag2O cubes, octahedra, and rhombic dodecahedra having the same total particle surface area were used for facet-dependent photocatalytic activity comparison in the degradation of methyl orange. Cubes are comparably highly active for this reaction, while octahedra and rhombic dodecahedra give moderate and low catalytic activities, respectively. Electron paramagnetic resonance (EPR) measurements confirm this reactivity order. Although all Ag2O samples show significant etching during photocatalysis, metallic silver is not produced. Furthermore, the facet-dependent electrical conductivity behaviors have also been measured for the three different faces of Ag2O. The Ag2O {111} faces are most electrically conductive, the {100} faces only moderately conductive at high applied voltages, and the {110} faces are non-conductive. The results are the same as those obtained for Cu2O crystals.

TABLE OF CONTENTS
論文摘要 II
ABSTRACT III
ACKNOWLEDGEMENT V
LIST OF FIGURES VIII
LIST OF SCHEMES XIII
LIST OF TABLES XIII
SYNTHESIS OF DIVERSE AG2O CRYSTALS FOR FACET-DEPENDENT PHOTOCATALYTIC ACTIVITY AND ELECTRICAL CONDUCTIVITY MEASUREMENTS 1
1.1 INTRODUCTION 1
1.1.1 The methods of synthesis of Ag2O 2
1.1.2 The photocatalysis of Ag2O nanoparticles and Ag-decorated Ag2O 7
1.1.3 Investigation of Relative Stability of Different Facets of Ag2O 10
1.1.4 Facet-dependent photocatalytic activity of Cu2O crystals 11
1.1.5 The Cu2O single crystal for electrical conductivity 12
1.2 GOALS TO ACCOMPLISH FOR THIS THESIS RESEARCH 13
1.3 EXPERIMENTAL SECTION 14
1.3.1 Chemicals 14
1.3.2 Synthesis of various Ag2O crystals by controlling the amount of AgNO3 and NH4NO3 14
1.3.3 Facet-Dependent Photocatalytic Activities of Ag2O Crystals 15
1.3.4 Paramagnetic Resonance (EPR) Measurements on Ag2O Crystals 16
1.3.5 Electrical conductivity measurements on Ag2O crystals with three different facets 18
1.3.6 Instrumentation 19
1.4 RESULTS AND DISCUSSION 20
1.5 CONCLUSION 48
1.6 REFERENCES 50


1.6 References
1. Huang, M. H.; Rej, S.; Hsu, S.-C. Nanocrystals. Chem. Commun. 2014, 50, 1634‒1644.
2. Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. J. Phys. Chem. C 2010, 114, 5073‒5079.
3. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155‒2160.
4. Huang, M. H.; Rej, S.; Chiu, C.-Y. Nanocrystals. Small 2015, 11, 2716‒2726.
5. Rej, S.; Wang, H.-J.; Huang, M.-X.; Hsu, S.-C.; Tan, C.-S.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Nanoscale 2015, 7, 11135‒11141.
6. Wang, H.-J.; Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Nanoscale 2016, 8, 965‒972.
7. Chen, H.-S.; Wu, S.-C.; Huang, M. H. Dalton Trans. 2015, 44, 15088‒15094.
8. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Chem. Mater. 2016, 28, 1574–1580.
9. Ida, Y.; Watase, S.; Shinagawa, T.; Watanabe, M.; Chigane, M.; Inaba, M.; Tasaka, A.; Izaki, M. Chem. Mater. 2008, 20, 1254–1256.
10. Muhsien, M. A.; Hamdan, H. H.; J. Energy Procedia. 2012, 18, 300–311.
11. Murray, B. J.; Li, Q.; Newberg, J. T.; Menke, E. J.; Hemminger, J. C.; R, M. Nano Lett. 2005, 5, 2319–2324.
12. Yan, Z.; Bao, R.; Chrisey, B. D. Langmuir 2011, 27, 851–855.
13. Wang, X.; Wu, H. F.; Kuang, Q.; Huang, R. B.; Xie, Z. X.; Zheng, L. S. Langmuir 2010, 26, 2774–2778.
14. Lyu, L. M.; Wang, W. C.; Huang, M. H. Chem.–Eur. J. 2010, 16, 14167–14174.
15. Wang, G.; Ma, B. H.; Cheng, H.; Wang, Z.; Zhan, J.; Qin, X.; Zhang, X.; Dai, Y. J. Mater. Chem. 2012, 22, 21189–21194.
16. Kim, M. J.; Cho, Y. S.; Park, S. H.; Huh, Y. D. Cryst. Growth Des. 2012, 12, 4180–4185.
17. Wang, X.; Li, S.; Yu, H.; Yu, J.; Liu, S. Chem.–Eur. J. 2011, 17, 7777–7780.
18. Lyu, L. M.; Huang, M. H. J. Phys. Chem. C. 2011, 115, 17768–17773.
19. Stoll, S.; Schweiger, J. Magn. Reson. 2006, 178, 42‒55.
20. Lyu, L.-M.; Huang, M. H. Chem. Asian J. 2013, 8, 1847–1853.
21. Yu, H.; Liu, R.; Wang, X.; Wang, P.; Yu, J. Appl. Catal., B 2012, 111, 326–333.
22. Wei, W.; Mao, X.; Ortiz, L. A.; Sadoway, D. R. J. Mater. Chem. 2011, 21, 432–438.
23. Yang, Z.-H.; Ho, C.-H.; Lee, S. Appl. Surf. Sci. 2015, 349, 609–614.
24. Xiong, J.; Li, Z.; Chen, J.; Zhang, S.; Wang, L.; Dou, S. ACS Appl. Mater. Interfaces 2014, 6, 15716–15725.
25. Pan, M.; Zhang, H.; Gao, G.; Liu, L.; Chen, W. Environ. Sci. Technol. 2015, 49, 6240–6248.
26. Liang, Y.; Guo, N.; Li, L.; Li, R.; Ji, G.; Gan, S. Appl. Surf. Sci. 2015, 332, 32–39.
27. Kandula, S.; Jeevanandam, P. RSC Adv. 2015, 5, 76150–76159.
28. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Chem. Mater. 2016, 28, 1574–1580.
29. Liu, G.; Yin, L. C.; Pan, J.; Li, F.; Wen, Lei.; Zhen, C.; Cheng, H. M. Adv. Mater. 2015, 27, 3507–3512
30. Kim, C. W.; Yeob, S. J.; Cheng, H. M.; Kang, Y. S. Energy Environ. Sci., 2015, 8, 3646-3653
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 氧化銀晶體展現表面晶格並探討尺寸與晶面相關的光學特性
2. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
3. 氧化鋅與氧化鎘奈米線的合成
4. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
5. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
6. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
7. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
8. 水溶液加熱還原法合成二維金奈米晶體
9. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
10. 一、奈米金結構之合成、官能基化與組裝 二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
11. Growth of ZnO and CdO Nanowires by Vapor Transport. Synthesis of Core-Shell Ga-GaN Nanostructures and GaN Hollow Spheres via Reflux Method
12. 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
13. 利用中孔洞氧化矽材料形成氮化銦及氧化銦奈米棒的製備與光譜分析
14. 以植晶法製備鈀奈米棒和具分支的鈀奈米晶體與可調控之高徑長比金奈米棒的合成
15. 合成規則性中孔洞有機矽薄膜並在有機矽孔壁存在分子尺寸規則排列
 
* *