帳號:guest(3.133.116.55)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹益泉
作者(外文):Chan, Yi Chuan
論文名稱(中文):雙鉬四鍵錯合物與有機鋅、主族試劑及小分子的反應
論文名稱(外文):Reactions of the Mo-Mo Quadruple Bond with Organozinc / Main Group Reagents and Small Molecules
指導教授(中文):蔡易州
指導教授(外文):Tsai, Yi Chou
口試委員(中文):季昀
尤禎祥
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023554
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:135
中文關鍵詞:四鍵有機鋅主族試劑雙鉬四鍵
外文關鍵詞:Quadruple BondOrganozincMain GroupSmall Molecules
相關次數:
  • 推薦推薦:0
  • 點閱點閱:413
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
本論文以高立體阻礙的PhB[N-2,6-iPr2C6H3)]2雙牙雙胺配基合成出的雙鉬金屬四重鍵Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2(C7H8) (1),用其低配位與低價數的性質與有機鋅、主族試劑及小分子進行反應。錯合物1與一當量有機鋅化合物如二苯基鋅、二甲基鋅及二乙基鋅反應,得到雙鉬三鍵錯合物cis-(R-Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Ph (2),Me (3),Et (4)),有機鋅化合物進行氧化加成以順式(cis)方式配位在雙鉬原子上,並脫去鋅原子。
將錯合物1與與第十六族的硫元素反應則會得到兩種產物,為具有一個硫原子配基之錯合物(μ-S)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (5)及過硫配基錯合物(μ-κ2-S2)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (6),將其近一步地利用鉀石墨(KC8)還原,則會得到具有超硫化配基之錯合物(κ2-S2Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (7),而將錯合物7與三當量的三苯基膦反應,可成功將錯合物5單離出。但將錯合物1與第十六族的硒或碲反應卻只能得到單一原子架橋之產物(μ-E)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (E = Se (8),Te (9))。有趣的是錯合物9於溶劑下時容易分解回錯合物1。
將錯合物1與一當量有機疊氮化合物如1-叠氮金剛烷及叠氮三甲基矽烷反應則脫去氮氣,得到[μ-RN]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = 1-Ad (10),TMS (11)),為氮原子架橋在鉬金屬間的亞胺基雙鉬三鍵錯合物。
將錯合物1與一當量烷基腈分子如丙腈及異丁腈反應,可得腈基配位在雙鉬金屬上之雙鉬三鍵錯合物[μ-η2-(R)CN]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Et (12),iPr (13)),形成燈籠型結構;而錯合物1會與兩當量的具有拉電子特性的4-溴苯腈反應,經由碳原子進行碳-碳鍵耦合,可得雙鉬三鍵錯合物[μ-η2-NC(4-BrC6H4)C(4-BrC6H4)N]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (14),但錯合物14上的碳-氮鍵與金屬鉬-鉬鍵整體不共平面,並無芳香性,此例子有別以往雙鉬五重鍵之[2+2+2]環加成反應。此外錯合物1與一當量苯乙炔反應,會形成燈籠型雙鉬三鍵錯合物(μ-η1:η1-C6H5CCH)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (15)。
最後,試圖降低配基的立體阻礙,以增加其反應性,改用PhB[NLi(2,6-Et2C6H3)]2雙牙雙胺配基合成出的雙鉬金屬三重鍵syn-Cl2Mo2[μ-κ2-PhB(N-2,6-Et2C6H3)2]2 (16),在進一步地利用鉀石墨(KC8)還原,可得到兩個雙鉬金屬四重鍵中間配位了氘代苯的錯合物{Mo2[μ-κ2-PhB(N-2,6-Et2C6H3)2]2}2(C6D6) (17),而中間的氘代苯因受到雙鉬金屬四重鍵的擠壓而形成椅型結構,也因此氘代苯不易脫離,迫使錯合物17反應性不如錯合物1。
Abstract
The low-valent and low-coordinate quadruply-bonded dimolybdenum complex, Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2(C7H8) (1), shows interesting reactivities toward organozinc, main group reagents and small molecules.
Treatment of 1 with one equiv of organozinc reagents, such as diphenylzinc, dimethylzinc, and diethylzinc, leads to the formation of dimolybdenum complex, cis-(R-Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Ph (2), Me (3), Et (4)), which are formed via an oxidative addition of one molecular organozinc reagents to 1, and then release one zinc atom.
Treatment of 1 with S8 gives two products. One is sulfide complex (μ-S)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (5) and the other is persulfide complex (μ-κ2-S2)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (6). Subsequent introduction of KC8 to the product mixture results in the isolation of the supersulfido complex (κ2-S2Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (7). Moreover, complex 5 can be isolated from complex 7 by adding three equivs of triphenylphosphine. However, treatment of 1 with Se or Te only leads to (μ-E)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (E = Se (8), Te (9)). Besides, complex 9 is unstable in organic solvents and it slowly decomplses back to complex 1.
Furthermore, the reaction of 1 with one equiv of organic azides, such as 1-adamantyl azide and trimethylsilyl azide, extrudes one equiv of dinitrogen molecule and gives a dimolybdenum imido complex, [μ-RN]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = 1-Ad (10), TMS (11)).
Reaction of 1 with one equiv of alkyl nitriles, such as propionitrile and isobutyronitrile, respectively, affords [μ-η2-(R)CN]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Et (12), iPr (13)).
However, treatment of 1 with two equivs of 4-bromobenzonitrile gives a [2+2+2] cycloaddition dimolybdenum adduct, [μ-η2-NC(4-BrC6H4)C(4-BrC6H4)N]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (14), which is formed via a C-C coupling. In contrast to the [2+2+2] dimolybdenum adducts formed from Mo-Mo quintuple bonded complexes, the central C2N2Mo2 six-membered ring of complex 14 is not planar, so it does not have aromatic property.
Treatment of 1 with one equiv of phenylacetylene leads to characterization of the [2+2] dimolybdenum cycloadduct, (μ-η1:η1-C6H5CCH)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (15),
Finally, the dimolybdenum complex syn-Cl2Mo2[μ-κ2-PhB(N-2,6-Et2C6H3)2]2 (16) stabilized by the less bulky ligand PhB[N-2,6-Et2C6H3]2 can be prepared. However, subsequent KC8 reduction leads to the characterization of an arene-bridged tetranuclear complex {Mo2[μ-κ2-PhB(N-2,6-Et2C6H3)2]2}2(C6D6) (17), in which two dimolybdenum units are bridged by a benzene-d6.
The bridged benzene-d6 in 7 is not planar but reather reduced to adopt a chair form and it is not labile. As a result, complex 17 is much less reactive than complex 1.
目錄
中文摘要 I
Abstract III
謝誌 V
目錄 VI
圖目錄 IX
流程圖目錄 X
第一章 緒論 1
1-1. 低配位金屬錯合物活化小分子 1
1-1-1. 前言 1
1-1-2. 三配位單鉬錯合物 1
1-1-3. 反三明治式雙釩及雙鉻錯合物 3
1-2. 金屬多重鍵錯合物與活化小分子 5
1-2-1. 前言 5
1-2-2. 雙鎢及雙鉬金屬多重鍵活化小分子 6
1-2-3. 雙鉻金屬五重鍵活化小分子 8
1-2-4. 雙鉬金屬五重鍵活化小分子 12
1-2-5. 雙鉬金屬四重鍵Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2的合成 14
第二章 雙鉬四重鍵錯合物與有機鋅、主族試劑的反應 16
2-1. 有機鋅化合物 16
2-1-1. 前言 16
2-1-2. 雙鉬四重鍵錯合物與二苯基鋅(diphenylzinc)的反應 21
2-1-3. 雙鉬四重鍵錯合物與二甲基鋅(dimethylzinc)的反應 24
2-1-4. 雙鉬四重鍵錯合物與二乙基鋅(diethylzinc)的反應 27
2-1-5. 實驗合成步驟 30
2-1-5-1. cis-(C6H5-Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (2) 30
2-1-5-2. cis-(CH3-Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (3) 31
2-1-5-3. cis-(C2H5-Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (4) 32
2-2. 第十六族(chalcogen) 35
2-2-1. 前言 35
2-2-2. 雙鉬四重鍵錯合物與硫(sulfur S8)的反應 38
2-2-3. 雙鉬四重鍵錯合物與硒(selenium)的反應 48
2-2-4. 雙鉬四重鍵錯合物與碲(tellurium)的反應 50
2-2-5. 實驗合成步驟 54
2-2-5-1 (μ-S)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (5) 54
2-2-5-2 (κ2-S2Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (7) 55
2-2-5-3 (μ-Se)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (8) 57
2-2-5-4 (μ-Te)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (9) 58
2-3. 第十五族疊氮分子 60
2-3-1. 前言 60
2-3-2. 雙鉬四鍵錯合物與1-叠氮金剛烷(1-adamantyl azide)的反應 64
2-3-3. 雙鉬四鍵錯合物與叠氮三甲基矽烷(trimethylsilyl azide)反應 67
2-3-4. 實驗合成步驟 70
2-3-4-1 [μ-N(1-adamantyl)]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (10) 70
2-3-4-2 [μ-N(SiMe3)]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (11) 71
2-4. 結論 73
第三章 雙鉬四重鍵錯合物與小分子的反應 75
3-1. 腈類化合物:(碳-氮)三鍵 75
3-1-1. 前言 75
3-1-2. 雙鉬四重鍵錯合物與丙腈(propionitrile)的反應 78
3-1-3. 雙鉬四重鍵錯合物與異丁腈(isobutyronitrile)的反應 80
3-1-4. 雙鉬四重鍵錯合物與4-溴苯腈(4-bromobenzonitrile)的反應 83
3-2. 炔類化合物:(碳-碳)三鍵 87
3-2-1. 前言 87
3-2-2. 雙鉬四重鍵錯合物與苯乙炔(phenylacetylene)的反應 91
3-3. 結論 94
3-4. 實驗合成步驟 96
3-4-1 [μ-η2-(C2H5)CN]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (12) 96
3-4-2 [μ-η2-(iPr)CN]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (13) 97
3-4-3 [μ-η2-NC(4-BrC6H4)C(4-BrC6H4)N]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (14)….. 98
3-4-4 (μ-η1:η1-C6H5CCH)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (15) 100
第四章 低立體障礙雙牙雙胺(diamido)配基之雙鉬四重鍵錯合物合成 102
4-1. 前言 102
4-2. 低立體障礙之雙鉬四重鍵錯合物合成 102
4-3. 實驗合成步驟 106
4-3-1 syn-Cl2Mo2[μ-κ2-PhB(N-2,6-Et2C6H3)2]2 (16) 106
4-3-2 {Mo2[μ-κ2-PhB(N-2,6-Et2C6H3)2]2}2(C6D6) (17) 106
第五章 其他嘗試與晶體結構資料 109
5-1. 其他嘗試 109
5-1-1. 雙鉬四重鍵錯合物與白磷(P4)的反應[IC2-43-c-123] 109
5-1-2. 雙鉬四重鍵錯合物與甲基苯叠氮(4-azidotoluene)的反應[IC1-12-g-168] 109
5-1-3. 雙鉬四重鍵錯合物與2,6-二異丙基苯叠氮(2,6-diisopropylphenyl azide)的反應[IC2-20-c-86] 110
5-1-4. 雙鉬四重鍵錯合物與乙腈(acetonitrile)的反應[IC2-9-b-41] 110
5-1-5. 雙鉬四重鍵錯合物與苯腈(benzonitrile)的反應[IC2-22-a-50] 111
5-1-6. 雙鉬四重鍵錯合物與2,4,6-三甲基苯腈(2,4,6-trimethylbenzonitrile)的反應[IC2-4-a-4] 111
5-1-7. 雙鉬四重鍵錯合物與白磷(P4)及雙鉬五重鍵錯合物的反應 112
5-2. 一般操作 113
5-3. 實驗使用儀器 113
5-4. 實驗溶劑與藥品 114
5-4-1. 溶劑 114
5-4-2. 實驗藥品 115
5-5. 晶體結構資料表 116
第六章 參考文獻 130
參考文獻
1. Alvarez, S., Coord. Chem. Rev. 1999, 193-195, 13.
2. Cummins, C. C., Prog. Inorg. Chem. 1998, 47, 685.
3. Laplaza, C. E.; Cummins, C. C., Science 1995, 268, 861.
4. Johnson, A. R.; Davis, W. M.; Cummins, C. C.; Serron, S.; Nolan, S. P.; Musaev, D. G.; Morokuma, K., J. Am. Chem. Soc. 1998, 120, 2071.
5. Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C.; Protasiewicz, J. D., J. Am. Chem. Soc. 1995, 117, 4999.
6. Laplaza, C. E.; Davis, W. M.; Cummins, C. C., Angew. Chem. Int. Ed. 1995, 34, 2042.
7. Curley, J. J.; Piro, N. A.; Cummins, C. C., Inorg. Chem. 2009, 48, 9599.
8. Tsai, Y. C.; Wang, P. Y.; Chen, S. A.; Chen, J. M., J. Am. Chem. Soc. 2007, 129, 8066.
9. Tsai, Y. C.; Wang, P. Y.; Lin, K. M.; Chen, S. A.; Chen, J. M., Chem. Commun. 2008, 205.
10. Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S., Science 1964, 145, 1305.
11. Cotton, F. A.; Lippard, S. J., J. Am. Chem. Soc. 1964, 86, 4497.
12. Cotton, F. A.; Murillo, L. A.; Walton, R. A., Multiple Bonds Between Metal Atoms, 3rd ed., Springer, Berlin, 2005.
13. Lawton, D.; Mason, R., J. Am. Chem. Soc. 1965, 87, 921.
14. Huq, F.; Mowat, W.; Shortland, A.; Skapski, A. C.; Wilkinson, G., Chem. Commun. 1971, 1079.
15. Strutz, H.; Schrock, R. R., Organometallics 1984, 3, 1600.
16. Chacon, S. T.; Chisholm, M. H.; Eisenstein, O.; Huffman, J. C. J. Am. Chem. Soc. 1992, 114, 8497.
17. Chisholm, M. H.; Huffman, J. C.; Hampden-Smith, M. J., J. Am. Chem. Soc. 1989, 111, 8497.
18. Chisholm, M. H.; Folting, K.; Glasgow, K. C.; Lucas, E.; Streib, W. E., Organometallics 2000, 19, 884.
19. Chisholm, M. H.; Huffman, J. C.; Lucas, E. A.; Sousa, A.; Streib, W. E., J. Am. Chem. Soc. 1992, 114, 2710.
20. Yamashita, Y.; Salter, M. M.; Aoyama, K.; Kobayashi, S., Angew. Chem. Int. Ed. 2006, 45, 3816.
21. Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P., Science 2005, 310, 844.
22. Ni, C.; Ellis, B. D.; Long, G. J.; Power, P. P., Chem. Commun. 2009, 2332.
23. Noor, A.; Glatz, G.; Müller, R.; Kaupp, M.; Demeshko, S.; Kempe, R., Nat Chem 2009, 1, 322.
24. Hsu, C. W.; Yu, J. S.; Yen, C. H.; Lee, G. H.; Wang, Y.; Tsai, Y. C., Angew. Chem. Int. Ed. 2008, 47, 9933.
25. 顏君旭, 國立清華大學化學研究所碩士論文. 2009.
26. Tsai, Y. C.; Chen, H. Z.; Chang, C. C.; Yu, J. S. K.; Lee, G. H.; Wang, Y.; Kou, T. S., J. Am. Chem. Soc.2009, 131,12534.
27. 劉士誠, 國立清華大學化學研究所碩士論文. 2010.
28. 陳思妏, 國立清華大學化學研究所碩士論文. 2011.
29. 林揚閔, 國立清華大學化學研究所博士論文. 2006.
30. Chen, H. Z.; Liu, S. C.; Yen, C. H.; Yu, J. S. K.; Shieh, Y. J.; Kou, T. S.; Tsai, Y. C., Angew. Chem. Int. Ed. 2012, 51, 10342.
31. Knochel, P.; Singer, R. D., Chem. Rev. 1993, 93, 2117.
32. Rao, S. A.; Knochel, P., J. Am.Chem. Soc. 1991, 113, 5735.
33. Soai, K.; Niwa, S., Chem. Rev. 1992, 92, 833.
34. Nakamura, M.; Hirai, A.; Nakamura, E., J. Am.Chem. Soc. 2000, 122, 978.
35. Alexakis, A.; Backvall, J. E.; Krause, N.; Pamies, O.; Dieguez, M., Chem. Rev. 2008, 108, 2796.
36. Gourdet, B.; Rudkin, M. E.; Watts, C. A.; Lam, H. W., J. Org. Chem. 2009, 74, 7849.
37. Tarwade, V.; Liu, X.; Yan, N.; Fox, J. M., J. Am.Chem. Soc. 2009, 131, 5382.
38. Yoshida, Y.; Murakami, K.; Yorimitsu, H.; Oshima, K. J. Am.Chem. Soc. 2010, 132, 8878.
39. Melzig, L.; Metzger, A.; Knochel, P., Chemistry 2011, 17, 2948.
40. Studemann, T.; Ibrahim-Ouali, M.; Knochel, P., Tetrahedron 1998, 54, 1299.
41. Bollermann, T.; Gemel, C.; Fischer, R. A., Coord. Chem. Rev. 2012, 256, 537.
42. Crotty, D. E.; Anderson, T. J.; Glick, M. D.; Oliver, J. P., Inorg. Chem. 1977, 16, 2346.
43. Budzelaar, P. H. M.; Boersma, J.; Kerk, G. J. M. V. D.; Spek, A. L.; Duisenberg, A. J. M., Inorg. Chem. 1982, 21, 3777.
44. Fryzuk, M. D.; McConville, D. H.; Rettig, S. J., Organometallics 1993, 12, 2152.
45. 李威廷, 國立清華大學化學研究所碩士論文. 2012.
46. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Schooler, P., J. Am. Chem. Soc., Dalton Trans. 2000, 2001.
47. Amarasekera, J.; Rauchfuss, T. B.; Rheingold, A. L., Inorg. Chem. 1987, 26, 2017.
48. Bolinger, C. M.; Rauchfuss, T. B.; Wilson, S. R., J. Am. Chem. Soc. 1981, 103, 5620.
49. Brunner, H.; Janietz, N.; Wachter, J.; Nuber, B.; Ziegler, M. L., J. Org. Chem. 1988, 356, 85.
50. Giolando, D. M.; Rauchfuss, T. B.; Rheingold, A. L.; Wilson, S. R., Organometallics 1987, 6, 667.
51. Müller, A.; Römer, M.; Bögge, H.; Krickemeyer, E.; Schmitz, K., Inorg. Chem. 1984, 85, L39.
52. Matsumura, Y.; Fujiwara, J.; Maruoka, K.; Yamamoto, H., J. Am. Chem. Soc. 1983, 105, 6312.
53. Pleus, R. J.; Saak, W.; Pohl, S. Z., Anorg. Allg. Chem. 2001, 627, 250.
54. Rauchfuss, T. B.; Rodgers, D. P. S.; Wilson, S. R., J. Am. Chem. Soc. 1986, 108, 3114.
55. Henderson, R. A.; Leigh, J. G.; Pickett, C. J. , Adv. Inorg. Chem. Radiochem. 1983, 27, 197.
56. Holm, R. H., Chem. Soc. Rev. 1981, 10, 455.
57. 陳宏章, 國立清華大學化學研究所博士論文. 2011.
58. Mak, Thomas C. M.; Goh, L. Y., J. Am. Chem. Soc. 1986, 19, 1474.
59. Tamne, E.S.; Noor, A.; Qayyum, S.; Bauer, T.; Kempe, R., Inorg. Chem. 2013, 52, 329-336.
60. Shen, J.; Yap, G. P.; Theopold, K.H., Chem. Commun. 2014, 50, 2579.
61. Bar-Nahum, I.; York, J. T.; Young, V. G.; Tolman, W. B., Angew. Chem. Int. Ed. 2008, 47, 533.
62. DuBois, M. R., Chem. Rev. 1989, 89, 1.
63. Yao, S.; Milsmann, C.; Bill, E.; Wieghardt, K.; Driess, M., J. Am. Chem. Soc. 2008, 130, 13536.
64. Elder, R. C.; Trkula, M., Inorg. Chem. 1977, 16, 1048.
65. Khan, M. M. T.; Siddiqui, M. R. H., Inorg. Chem. 1991, 30, 1157.
66. Kieber-Emmons, M. T.; Riordan, C. G., Acc. Chem. Res. 2007, 40, 618.
67. Shearer, J.; Zhao, N., Inorg. Chem. 2006, 45, 9637.
68. Sugimoto, H.; Tatemoto, S. ; Toyota, K.; Ashikari, K.; Kubo, M.; Ogura, T.; Itoh, S., Chem. Commun. 2013, 49, 4358.
69. Hayton, T. W.; Wu, G.; Smiles, D. E., Inorg. Chem. 2014, 53, 12683.
70. Stephan, D. W.; Longobardi, L. E.; Wolter, V., Angew. Chem. Int. Ed. 2015, 54, 809.
71. Cenini, S., Coord. Chem. Rev. 2006, 250, 1234-1253.
72. Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V., Angew. Chem. Int. Ed. 2005, 44, 5188.
73. Curtis, M. D.; D’Errico, J. J.; Bulter, W. M. Organometallics 1987, 6, 2151-2157.
74. Curtis, M. D.; Messerle, L.; D’Errico, J. J.; Solis, H. E.; Barcelo, I. D.; Bulter, W. M., J. Am. Chem. Soc. 1987, 109, 3603.
75. Curtis, M. D.; Messerle, L,; D’Errico, J. J.; Bulter, W. M.; Hay, M. S., Organometallics 1986, 5, 2283.
76. Cenini, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Fantauzzi, S.; Piangiolino, C., Coord. Chem. Rev. 2006, 250, 1234.
77. Bottomley, L. A.; Neely, F. L., J. Am. Chem. Soc. 1989, 111, 5955.
78. Bottomley, L. A.; Neely, F. L., Inorg. Chem. 1997, 36, 5435.
79. Neely, F. L.; Bottomley, L. A., Inorg. Chem. 1997, 36, 5432.
80. Woo, L. K.; Czapla, D. J.; Goll, J. G., Inorg. Chem. 1990, 29, 3915.
81. Woo, L. K.; Goll, J. G., J. Am. Chem. Soc. 1989, 111, 3755.
82. Woo, L. K.; Goll, J. G.; Czapla, D. J.; Hays, J. A., J. Am. Chem. Soc. 1991, 113, 8478.
83. Clough, C. R.; Greco, J. B.; Figueroa, J. S.; Diaconescu, P. L.; Davis, W. M.; Cummins, C. C., J. Am. Chem. Soc. 2004, 126, 7742.
84. Curley, J. J.; Sceats, E. L.; Cummins, C. C., J. Am. Chem. Soc. 2006, 128, 14036.
85. Figueroa, J. S.; Piro, N. A.; Clough, C. R.; Cummins, C. C., J. Am. Chem. Soc. 2005, 128, 940.
86. Silvia, J. S.; Cummins, C. C., J. Am. Chem. Soc. 2008, 131, 446.
87. Silvia, J. S.; Cummins, C. C., J. Am. Chem. Soc. 2010, 132, 2169.
88. Schrock, R. R., Chem. Rev. 2009, 109, 3211.
89. Schrock, R. R.; Hoveyda, A. H., Angew. Chem. Int. Ed. 2003, 42, 4592.
90. Cantrell, G. K.; Meyer, T. Y., Organometallics 1997, 16, 5381.
91. Cantrell, G. K.; Meyer, T. Y., Chem. Commun. 1997, 1551.
92. de Bellefon, C.; Fouilloux, P., Catalysis Reviews: Science and Engineering 1994, 36, 459.
93. Michelin, R. A.; Mozzon, M.; Bertani, R., Coord. Chem. Rev. 1996, 147, 299.
94. Feng, Q.; Ferrer, M.; Green, M. L. H.; Mountford, P.; Mtetwa, V. S. B., J. Am. Chem. Soc., Dalton Trans. 1992, 1205.
95. Garcia Alonso, F. J.; Garcia Sanz, M.; Riera, V.; Anillo Abril, A.; Tiripicchio, A.; Ugozzoli, F., Organometallics 1992, 11, 801.
96. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X., Polyhedron 1998, 17, 2781.
97. Cotton, F. A.; Kühn, F. E., J. Am. Chem. Soc. 1996, 118, 5826.
98. Kawashima, T.; Takao, T.; Suzuki, H., Angew. Chem. Int. Ed. 2006, 45, 485.
99. Kukushkin, V. Y.; Pombeiro, A. J. L., Chem. Rev. 2002, 102, 1771-1802.
100. Suzuki, H.; Kawashima, T.; Takao, T., Angew. Chem. Int. Ed. 2006, 118, 499-502.
101. Nicholls, D.; Ryan, T. A., Inorg. Chim. Acta 1980, 41, 233-237.
102. Zhang, S.; Zhang, W. X.; Zhao, J.; Xi, Z., J. Am. Chem. Soc. 2010, 132, 14042-14045.
103. Cummins, C. C.; Peters, J. C.; Baraldo, L. M.; Baker, T. A.; Johnson, A. R., J. Organomet. Chem. 1999, 591, 24-35.
104. Cummins, C. C.; Christian, G.; Stranger, R.; Yatesb, B. F., Dalton Trans. 2008, 338-344.
105. Li, B.; Xu, S.; Song, H.; Wang, B., J. Org. Chem. 2008, 693, 87.
106. Chivers, T.; Fedorchuk, C.; Parvez, M., Organometallics 2004, 43, 2643-2653.
107. Heppekausen, J.; Stade, R.; Goddard, R.; Fürstner, A., J. Am. Chem. Soc. 2010, 132, 11045.
108. Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T., Liebigs Ann. Chem. 1948, 560, 1.
109. Grotjahn, D. B., In Comprehensive Organometallic Chemistry II; Pergamon: Oxford, U.K., 741
110. Yeh, W. Y.; Ho, C. L.; Chiang, M. Y.; Chen, I. T., Organometallics 1997, 16, 2698.
111. Baxter, R. J.; Knox, G. R.; Moir, J. H.; Pauson, P. L.; Spicer, M. D., Organometallics 1998, 18, 206.
112. Hoffman, D. M.; Hoffmann, R.; Fisel, C. R., J. Am. Chem. Soc. 1982, 104, 3858.
113. Chisholm, M. H.; Click, D. R.; Gallucci, J. C.; Hadad, C. M.; Wilson, P. J., J. Am. Chem. Soc. 2002, 124, 14518.
114. Chisholm, M. H.; Lynn, M. A., J. Org. Chem. 1998, 550, 141.
115. Cotton, F. A.; Feng, X., Inorg. Chem. 1990, 29, 3187.
116. Spaltenstein, E.; Mayer, J. M. J. Am. Chem. Soc. 1991, 113,7744.
117. Schollhammer, P.; Cabon, N.; Capon, J. F.; Pétillon, F. Y.; Talarmin, J.; Muir, K. W., Organometallics 2001, 20, 1230.
118. Chivers, T.; Fedorchuk, C.; Parvez, M., Inorg. Chem. 2004, 43, 2643.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *