帳號:guest(18.191.150.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃士賢
作者(外文):Huang, Shih-Sian
論文名稱(中文):氧化銦錫奈米晶粒之合成與一氧化碳氣體感測研究
論文名稱(外文):Synthesis of Indium Tin Oxide Nanocrystals for Carbon Monoxide Sensing
指導教授(中文):楊家銘
指導教授(外文):Yang, Chia-Min
口試委員(中文):鄭桂忠
王立群
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023551
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:82
中文關鍵詞:氧化銦錫一氧化碳氣體感測
外文關鍵詞:Indium Tin OxideCarbon Monoxide Sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:269
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文以非水溶液凝膠-溶膠法合成二氧化錫及氧化銦錫奈米顆粒,並研究其於一氧化碳感測活性。在合成中我們利用配位基對錫前驅物水解縮合速率的影響,調控二氧化錫晶粒大小,並且利用不同金屬前驅物的組合,合成不同錫銦比之氧化銦錫奈米顆粒。透過X光粉末繞射、穿透式電子顯微鏡以及感應耦合電漿質譜來對合成的奈米晶粒進行結構、晶粒尺寸與成分分析。合成的二氧化錫奈米晶粒具有高結晶性,且吡啶以及水的加入可以有效地調控晶粒尺寸。氧化銦錫奈米晶粒之晶粒尺寸會隨著錫含量的下降而增加,且當合成液中Sn/In比達5.67時氧化銦錫會由金紅石結構轉變成立方結構。應用於偵測一氧化碳氣體研究中我們發現Sn/In比為3之氧化銦錫,反應性較二氧化錫奈米晶粒高,且具有較低的操作溫度(150 ℃)。為了降低感測時間,我們利用電阻值變化速度取代平衡時電阻,推算變速度與濃度之關聯方程式,並利用實驗證實可用此式推算一氧化碳濃度大幅縮短反應時間從數分鐘減少至50秒。
In the thesis, we aimed to synthesize tin oxide and indium tin oxide nanocrystals via non-aqueous sol-gel route and study the activity of these materials for carbon monoxide sensing. Different ligands were used to control the size of the nanocrystals, and indium tin oxide of varied tin/indium ratio were prepared with proper combination of metal precursors. The obtained materials were characterized by powder X-ray diffraction, transmission electron microscopy, inductively coupled plasma mass spectrometry. The results indicated that tin oxide nanocrystal were highly crystalline, and the size of tin oxide could be well controlled by the addition of pyridine or water. For indium tin oxide nanocrystals, the size increased, as the molar ratio of tin/indium ratio decreased, and the nanocrystals with tin/indium ratio lower than 5.67 caused phase transformation from rutile to cubic phase. Results of carbon monoxide sensing indicated that indium tin oxide nanocrystals with 25 % of indium showed better response at lower operating temperature than tin oxide nanocrystals. We proposed an equation based on the reaction mechanism and reaction kinetics to estimate the concentration of carbon monoxide, and the results confirmed fair accuracy of the method.
第一章緒論 1
1-1氣體感測與環境安全 1
1-2 常用氣體感測器種類 3
1-2-1觸媒燃燒型 4
1-2-2紅外線吸收型 4
1-2-3電化學型 5
1-2-4電化學固態電解質型 5
1-2-5壓電型 6
1-2-6金屬氧化物半導體型 6
1-3半導體型感測原理 6
1-3-1感測原理 7
1-4 一氧化碳氣體感測材料 9
1-4-1 二氧化錫 10
1-4-2 氧化銦錫 12
1-5感測條件優化機制 13
1-5-1 感測材料附載催化金屬 13
1-5-2感測材料顆粒尺寸影響 15
1-6 感測材料製備 17
1-6-1水溶液溶膠-凝膠法 20
1-6-2 非水溶液溶膠-凝膠法 22
1-7 研究動機 25
第二章 實驗方法 27
2-1 實驗藥品 27
2-2感測材料製備 27
2-2-1 二氧化錫奈米顆粒合成 28
2-2-2 氧化銦錫奈米顆粒合成 31
2-3 材料性質鑑定與儀器 34
2-3-1 X光粉末繞射儀 34
2-3-2穿透式電子顯微鏡 35
2-3-3 感應耦合電漿質譜分析儀 37
2-3-4 掃描式電子顯微鏡 38
2-4 一氧化碳氣體感測 39
2-4-1 感測晶片製備 39
2-4-2 一氧化碳氣體感測 41
第三章 結果與討論 44
3-1感測材料合成與鑑定 44
3-1-1 二氧化錫奈米顆粒合成 44
3-1-2氧化銦錫奈米晶粒合成 47
3-2氧化銦錫感測材料感測一氧化碳 53
3-2-1不同錫銦比對一氧化碳之反應性比較 53
3-2-2晶片附載感測材料之條件 55
3-2-3 SnO2、In-SnO2-75在不同溫度下感測反應性 59
3-2-4 利用起始反應進行濃度估算 73
第四章 結論 77
第五章 參考文獻 78
[1] 蔡嬪嬪; 曾明漢, 材料與社會 1992, 58, 50-56.
[2] Korotcenkov, G., Chemical sensors: comprehensive sensor technologies, volume 6: chemical sensors applications. Momentum Press: 2011; p 402.
[3] Love, A. L., Carbon Monoxide in the Home Environment. University of Oklahoma.: 1986; p 288.
[4] Omaye, S. T., Toxicology 2002, 180, 139-150.
[5] Masters, G. M., Introduction to Environmental Engineering and Science. Prentice Hall: 1997; p 720.
[6] Seinfeld, J. H., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley: 2006; p 1232.
[7] Masters, G. M., 環境工程與科學概論. 臺灣培生教育出版: 2001; p 733.
[8] 陶德和, 科儀新知 1993, 15, 64-70.
[9] 曾明漢, 材料與社會 1992, 68, 57-61.
[10] Yang, S.-H.; Hong, S.-Y.; Tsai, C.-H., Japanese Journal of Applied Physics 2010, 49, 06GJ06.
[11] 黃炳照, CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) 2001, 59, 207-217.
[12] Morrison, S. R., Sens. Actuators 1982, 2, 329-241.
[13] Z, Z., J Nanosci Nanotechnol 2013, 13, 1507-1510.
[14] Marton, J. P., J. Electrochem. Soc. 1976, 123, 199-205.
[15] Azad, A. M.; Akbar, S. A.; Mhaisalkar, S. G.; Birkefeld, L. D.; Goto, K. S., J. Electrochem. Soc. 1992, 139, 3690-3704.
[16] Gentry, S. J.; Jones, T. A., Sens. Actuators 1986, 10, 141-163.
[17] Barsan, N.; Schweizer-Berberich, M.; Gopel, W., Fresenius' J. Anal. Chem. 1999, 365, 287-304.
[18] Zhang, Z.; Yates, J. T., Chemical Reviews 2012, 112, 5520-5551.
[19] Heiland, G., Sens. Actuators 1982, 2, 343-361.
[20] Gopel, W.; Rocker, G.; Feierabend, R., Phys. Rev. B: Condens. Matter 1983, 28, 3427-3438.
[21] Franke, M. E.; Koplin, T. J.; Simon, U., Small 2006, 2, 36-50.
[22] Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M., Anal. Chem. 1962, 34, 1502-1513.
[23] Sberveglieri, G.; Editor, Gas Sensors: Principles, Operation, and Developments. Kluwer: 1992; p 409
[24] Batzill, M.; Diebold, U., Prog. Surf. Sci. 2005, 79, 47-154.
[25] Hamad, B. A., Eur. Phys. J. B 2009, 70, 163-169.
[26] Das, S.; Jayaraman, V., Progress in Materials Science 2014, 66, 112-255.
[27] Lu, Z.; Ma, D.; Yang, L.; Wang, X.; Xu, G.; Yang, Z., Phys. Chem. Chem. Phys. 2014, 16, 12488-12494.
[28] Neri, G.; Bonavita, A.; Micali, G.; Rizzo, G.; Pinna, N.; Niederberger, M.; Ba, J., Sens. Actuators, B 2008, 130, 222-230.
[29] Barsan, N.; Weimar, U., J. Electroceram. 2002, 7, 143-167.
[30] 楊明輝, 工業材料 2002, 189, 161-174.
[31] 楊明輝, 工業材料 2001, 179, 134-144.
[32] Hu, J.; Zhu, F.; Zhang, J.; Gong, H., Sens. Actuators, B 2003, 93, 175-180.
[33] Sberveglieri, G.; Groppelli, S.; Coccoli, G., Sens. Actuators 1988, 15, 235-242.
[34] Sberveglieri, G.; Benussi, P.; Coccoli, G.; Groppelli, S.; Nelli, P., Thin Solid Films 1990, 186, 349-360.
[35] Marotta, V.; Orlando, S.; Parisi, G. P.; Giardini, A., Appl. Surf. Sci. 2000, 154-155, 640-646.
[36] Sako, T.; Ohmi, A.; Yumoto, H.; Nishiyama, K., Surf. Coat. Technol. 2001, 142-144, 781-785.
[37] Zhang, J.; Hu, J. Q.; Zhu, F. R.; Gong, H.; O'Shea, S. J., Sens. Actuators, B 2002, 87, 159-167.
[38] Jiao, Z.; Wu, M.; Qin, Z.; Lu, M.; Gu, J., Sensors 2003, 3, 285-289.
[39] Salehi, A., Sens. Actuators, B 2003, 94, 184-188.
[40] Jiao, Z.; Wu, M.; Gu, J.; Sun, X., Sens. Actuators, B 2003, 94, 216-221.
[41] Patel, N. G.; Makhija, K. K.; Panchal, C. J.; Dave, D. B.; Vaishnav, V. S., Sens. Actuators, B 1995, 23, 49-53.
[42] Hattori, A.; Tachibana, H.; Yoshiike, N.; Yoshida, A., Sens. Actuators, A 1999, 77, 120-125.
[43] Patel, N. G.; Patel, P. D.; Vaishnav, V. S., Sens. Actuators, B 2003, 96, 180-189.
[44] Lee, S.-M.; Lee, Y.-S.; Shim, C.-H.; Choi, N.-J.; Joo, B.-S.; Song, K.-D.; Huh, J.-S.; Lee, D.-D., Sens. Actuators, B 2003, 93, 31-35.
[45] Yamazoe, N.; Sakai, G.; Shimanoe, K., Catal. Surv. Asia 2003, 7, 63-75.
[46] Katoch, A.; Byun, J.-H.; Choi, S.-W.; Kim, S. S., Sens. Actuators, B 2014, 202, 38-45.
[47] Xiao, H., Introduction to semiconductor manufacturing technology. Prentice Hall: 2000; p 647.
[48] Smith, D., Thin-Film Deposition: Principles and Practice. Mcgraw-Hill: 1995; p 616.
[49] Hench, L. L.; West, J. K., Chem. Rev. 1990, 90, 33-72.
[50] Brinker, C. J.; Scherer, G. W., Sol-Gel science: The Physics and Chemistry of Sol-Gel Processing. Gulf Professional: 1990; p 908.
[51] Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Chem. Rev. 2004, 104, 3893-3946.
[52] Bradley, D. C., Chem. Rev. 1989, 89, 1317-1422.
[53] Lee, G. R.; Crayston, J. A., Adv. Mater. 1993, 5, 434-42.
[54] Lu, Z.-l.; Lindner, E.; Mayer, H. A., Chem. Rev. 2002, 102, 3543-3577.
[55] Pierre, A. C.; Pajonk, G. M., Chem. Rev. 2002, 102, 4243-4265.
[56] Schwarz, J. A.; Contescu, C.; Contescu, A., Chem. Rev. 1995, 95, 477-510.
[57] Wight, A. P.; Davis, M. E., Chem. Rev. 2002, 102, 3589-3613.
[58] Ovenstone, J.; Yanagisawa, K., Chem. Mater. 1999, 11, 2770-2774.
[59] Burnside, S. D.; Shklover, V.; Barbe, C.; Comte, P.; Arendse, F.; Brooks, K.; Graetzel, M., Chem. Mater. 1998, 10, 2419-2425.
[60] Yanagisawa, K.; Ovenstone, J., J. Phys. Chem. B 1999, 103, 7781-7787.
[61] Yin, H.; Wada, Y.; Kitamura, T.; Sumida, T.; Hasegawa, Y.; Yanagida, S., J. Mater. Chem. 2002, 12, 378-383.
[62] Cheng, H.; Ma, J.; Zhao, Z.; Qi, L., Chem. Mater. 1995, 7, 663-671.
[63] Wang, C.-C.; Ying, J. Y., Chem. Mater. 1999, 11, 3113-3120.
[64] Zhang, H.; Finnegan, M.; Banfield, J. F., Nano Lett. 2001, 1, 81-85.
[65] Niederberger, M., Acc. Chem. Res. 2007, 40, 793-800.
[66] Niederberger, M.; Garnweitner, G., Chem. - Eur. J. 2006, 12, 7282-7302.
[67] Ba, J.; Polleux, J.; Antonietti, M.; Niederberger, M., Adv. Mater. 2005, 17, 2509-2512.
[68] Bilecka, I.; Djerdj, I.; Niederberger, M., Chem. Commun. 2008, 886-888.
[69] Garnweitner, G.; Niederberger, M., J. Am. Ceram. Soc. 2006, 89, 1801-1808.
[70] Niederberger, M.; Bartl, M. H.; Stucky, G. D., Chem. Mater. 2002, 14, 4364-4370.
[71] Pinna, N.; Niederberger, M., Angew. Chem., Int. Ed. 2008, 47, 5292-5304.
[72] Barsan, N.; Koziej, D.; Weimar, U., Sens. Actuators, B 2007, 121, 18-35.
[73] Chen, C.-H.; Liu, C.-H.; Su, Y.-C.; Yang, C.-M., Appl. Catal., B 2012, 123-124, 36-42.
[74] Mutin, P. H.; Vioux, A., Chem. Mater. 2009, 21, 582-596.
[75] Moon, C. S.; Kim, H.-R.; Auchterlonie, G.; Drennan, J.; Lee, J.-H., Sens. Actuators, B 2008, 131, 556-564.
[76] Azam, A.; Habib, S. S.; Salah, N. A.; Ahmed, F., Int. J. Nanomed. 2012, 8, 3875-3882.
[77] Barsan, N.; Weimar, U., J. Phys.: Condens. Matter 2003, 15, R813-R839.
[78] Sakai, G.; Baik, N. S.; Miura, N.; Yamazoe, N., Sens. Actuators, B 2001, 77, 116-121.
[79] Windischmann, H.; Mark, P., J. Electrochem. Soc. 1979, 126, 627-633.
[80] Pinna, N.; Neri, G.; Antonietti, M.; Niederberger, M., Angew Chem Int Ed Engl 2004, 43, 4345-439.
[81] Jones, D. R.; Maffeis, T. G. G., Sens. Actuators, B 2015, 218, 16-24.
[82] Farahpour, P.; Mohammadi, M. R.; Fray, D. J., J. Cluster Sci. 2014, 25, 905-923.
[83] Khodadadi, A.; Mohajerzadeh, S. S.; Mortazavi, Y.; Miri, A. M., Sens. Actuators, B 2001, 80, 267-271.
[84] Rumyantseva, M.; Kovalenko, V.; Gaskov, A.; Makshina, E.; Yuschenko, V.; Ivanova, I.; Ponzoni, A.; Faglia, G.; Comini, E., Sens. Actuators, B 2006, 118, 208-214.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *