帳號:guest(3.144.243.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):袁國智
作者(外文):Yuan, Guo-Zhi
論文名稱(中文):合成金修飾的氧化亞銅探討高度晶面相關的光催化性質
論文名稱(外文):Highly Facet-Dependent Photocatalytic Properties of Cu2O Established through Formation of Au-Decorated Cu2O Nanocrystals
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):江昀緯
裘性天
黃暄益
口試委員(外文):Chiang, Yun-Wei
Chiu, Hsin-Tien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023547
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:72
中文關鍵詞:氧化亞銅光催化晶面效應
外文關鍵詞:cuprous oxidephotocatalysisfacet dependent
相關次數:
  • 推薦推薦:0
  • 點閱點閱:517
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們提出一個簡易的方法在氧化亞銅立方體、八面體、菱形十二面體的表面上沉積金納米粒子同時不破壞晶面。本研究的目的是測試傳統關於利用金屬助催化劑長在半導體粒子上的方式可提高半導體的光催化活性的認知。如果確實是如此,也必須確定哪些晶面提供了最好的活性,而非不管晶面效應所可能帶來的巨大影響,因為氧化亞銅立方體已被觀察到在甲基橙光催化中是沒有活性的。金修飾的氧化亞銅晶體已用各式各樣的方法鑑定,證實有微量的金粒子沉積在氧化亞銅晶體上。有金修飾的菱形十二面體和八面體的光催化表現優於同樣形貌但沒有金修飾的氧化亞銅晶體,然而金修飾的氧化亞銅立方體還是沒有活性。金修飾於小顆的氧化亞銅立方體上也沒有活性。此外,實驗結果顯示金-氧化亞銅菱形十二面體核殼結構的光催化活性是介於氧化亞銅菱形十二面體和金修飾的氧化亞銅菱形十二面體之間。我們也計算出各種氧化亞銅晶體的個別反應速率常數。EPR測量顯示羥基自由基的產量最高為菱形十二面體,次之為八面體。氧化亞銅立方體在可見光照射下不會產生羥基自由基。EPR的結果與光催化上的觀察相符。根據以上實驗結果,我們可以修正氧化亞銅的能帶圖,使不同晶面在接近表面的能帶彎曲程度有明顯的差異以解釋所觀察到的晶面相關的光催化活性。沒有催化活性的{100}晶面可以被理解為其表面層具有較高的能障阻擋光激發所產生的電子到達立方體表面,所以沒有生成自由基引起光降解。這項工作顯示出傳統認知需要被修改並考慮到半導體的晶面,不然有時候這樣的認知在實驗上可以是完全錯誤的。
We report a simple method for depositing Au nanoparticles on the surfaces of Cu2O cubes, octahedra, and rhombic dodecahedra with preservation of sharp facets. The purpose of this study is to test whether the conventional model of a metal cocatalyst anchored on a semiconductor particle can always enhance photocatalytic activity of the semiconductor. If so, it is also necessary to determine which facet gives the best activity. This is especially interesting for Cu2O cubes, which have been shown to be inactive toward photocatalysis of methyl orange. The Au-decorated Cu2O crystals have been characterized by various techniques. Au-decorated rhombic dodecahedra and octahedra outperformed their pristine counterparts, while Au-deposited cubes remained inactive. Au-decorated small cubes were also inactive. Furthermore, Au‒Cu2O core‒shell rhombic dodecahedra exhibited intermediate photocatalytic activity between those of rhombic dodecahedra and Au-decorated rhombic dodecahedra. Reaction rate constants for the various Cu2O crystals have been determined. EPR measurements showed highest production of hydroxyl radicals for rhombic dodecahedra and a lower level of radical generation for octahedra. Radicals were not produced from Cu2O cubes upon visible light irradiation. The EPR results match perfectly with photocatalysis observations. A modified band diagram has been constructed to account for the observed facet-dependent photocatalytic activity. The inactivity of the {100} face can be understood by considering its surface layer as constituted of a high barrier blocking photoexcited electrons from reaching the cube surface, so no radicals are produced to cause photodegradation. This work firmly shows that the conventional model needs to be modified taking into account of the surface facets of semiconductors, because sometimes this model can fail completely.
論文摘要 ………………………………………………………………………………………………………………..I
ABSTRACT OF THE THESIS III
TABLE OF CONTENTS VI
ACKNOWLEDGEMENTS Ⅴ
LIST OF FIGURES VIII
LIST OF TABLES XIV

CHAPTER 1 Overview of the Dissertation and the Background Knowledge
1.1 The Background Knowledge 1
1.1.1 Photocatalysis 1
1.1.2 The Process for Photocatalytic Degradation of Methyl Orange Dye 6
1.2 Catalytic Properties with Specific Facets 8
1.3 The Method and Principle of Increasing Photocatalytic Activity 11
1.3.1 Metal/Semiconductor Heterostructures 11
1.3.2 Semiconductor/Semiconductor Heterostrutures 17
1.4 References 20

Chapter 2 Highly Facet-Dependent Photocatalytic Properties of Cu2O Established through Formation of Au-Decorated Cu2O Nanocrystals
2.1 Introduction 23
2.2 Experimental Section 25
2.2.1 Chemicals 25
2.2.2 Synthesis of Cu2O Nanocrystals and Au@Cu2O Rhombic Dodecahedra .…26
2.2.3 Synthesis of Au-decorated Cu2O nanocrystals 30
2.2.4 Photocatalysis experiments 33
2.2.5 Hydroxyl radical generation detected using electron paramagnetic resonance spectrometry (EPR) 34
2.2.6 Instrumentation 35
2.3 Results and discussion 37
2.4 Conclusion 68
2.5 References 70
1. Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C. 2009, 113, 14159–14164.
2. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261–1267.
3. Lyu, L.-M.; Wang, W.-C.; Huang, M. H. Chem.‒Eur. J. 2010, 16, 14167–14174.
4. Wu, J.-K.; Lyu, L.-M.; Liao, C.-W.; Wang, Y.-N.; Huang, M. H. Chem.‒Eur. J. 2012, 18, 14473–14478.
5. Wang, H.; Yang, J.; Li, X.; Zhang, H.; Li, J.; Guo, L. Small 2012, 8, 2802–2806.
6. Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Chem. Mater. 2006, 18, 867–871.
7. Bao, H.; Zhang, W.; Hua, Q.; Jiang, Z.; Yang, J.; Huang, W. Angew. Chem., Int. Ed. 2011, 50, 12294–12298.
8. Sun, S.; Song, X.; Sun, Y.; Deng, D.; Yang, Z. J. Phys. Chem. C. 2010, 114, 5073–5079.
9. Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Kondo, J. N.; Domen, K.; Hara, M.; Shinohara, K.; Tanaka, A. Chem. Commun. 1998, 2, 357–358.
10. Wei, H. M.; Gong, H. B.; Chen, L.; Zi, M.; Cao, B. Q. J. Phys. Chem. C. 2012, 116, 10510–10515.
11. Chanda, K.; Rej, S.; Huang, M. H. Chem.‒Eur. J. 2013, 19, 16036–16043.
12. Xu, Y.; Wang, H.; Yu, Y.; Tian, L.; Zhao, W.; Zhang, B. J. Phys. Chem. C. 2011, 115, 15288–15296.
13. Wang, W.-C.; Lyu, L.-M.; Huang, M. H. Chem. Mater. 2011, 23, 2677‒2684.
14. Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, N. J. Am. Chem. Soc. 2012, 134, 15033–15041.
15. Silva, C. G.; Juárez, R.; Marino, T.; Molinari, R.; García, H. J. Am. Chem. Soc. 2011, 133, 595–602.
16. Chang, I.-C.; Chen, P.-C.; Tsai, M.-C.; Chen, T.-T.; Yang, M.-H.; Chiu, H.-T.; Lee, C.-Y. CrystEngComm 2013, 15, 2363‒2366.
17. Swadzba-Kwásny, M.; Chancelier, L.; Ng, S.; Manyar, H. G.; Hardacre, C.; Nockemann, P. Dalton Trans. 2012, 41, 219–227.
18. Tahir, D.; Tougaard, S. J. Phys.: Condens. Matter. 2012, 24, 175002–175009.
19. Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H. Nanoscale 2014, 6, 4316‒4324.
20. Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052‒1057.
21. Zheng, Z.; Huang, B.; Wang, Z.; Guo, M.; Qin, X.; Zhang, X.; Wang, P.; Dai, Y. J. Phys. Chem. C. 2009, 113, 14448–14453.
22. Bao, H.; Zhang, W.; Hua, Q.; Jiang, Z.; Yang, J.; Huang, W. Angew. Chem., Int. Ed. 2011, 50, 12294–12298.
23. Sroiraya, S.; Triampo, W.; Morales, N. P.; Triampo, D. J. Ceramic Processing Res. 2007, 9, 1–9.
24. Anzai, K.; Aikawa, T.; Furukawa, Y.; Matsushima, Y.; Urano, S.; Ozawa, T. Arch. Biochem. Biophys. 2003, 415, 251–256.
25. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155−2160.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 一、立方體型態演繹至六足體之氧化銀奈米晶體的合成及其表面特性 二、研究多截面金奈米晶粒核的形狀以及表面晶面對於形成氧化亞銅包金核殼異質結構的影響
2. 藉由化學性蝕刻形成具截邊立方體和截角菱形十二面體結構的氧化亞銅奈米骨架;超小顆氧化亞銅立方體和八面體以及八足體的合成及其光催化活性的探討
3. 氧化亞銅奈米粒子之光學性質與能帶結構探討與氧化亞銅與硫化鎘之異質介面所造成的光催化活性的抑制
4. 利用電子、電洞和自由基捕捉劑探討氧化亞銅晶體於光催化的晶面效應
5. 無光催化活性之氧化亞銅立方體經硫化銀沉積後變具有高催化活性
6. 密度泛函理論佐證因能帶及電荷分佈改變使得4-硝基苯乙炔修飾的氧化亞銅粒子其染料光降解活性大幅增強
7. 多面體氧化亞銅奈米晶體光催化芳基硼酸分子羥基化反應
8. 於氧化亞銅立方體表面修飾含腈基或鹵素的乙炔基苯分子以增強其光催化活性
9. 利用多面體的氧化亞銅奈米晶體進行光催化的氧化環化硫代醯胺之反應
10. 以4-硝基苯乙炔修飾的氧化亞銅多面體進行光催化氧化伯胺耦聯反應
11. 利用氧化亞銅粒子進行光催化硫醇氧化反應
12. Facet-Dependent Organocatalytic Activities of Au and Cu2O Nanocrystals and Facet-Dependent Optical Properties of Pd-Cu2O Core-Shell Nanocrystals
13. 氧化亞銅奈米晶體其具晶面效應的導電性質及金-氧化亞銅、金@銀-氧化亞銅核殼奈米晶體其具晶面效應的光學性質
14. 4-硝基苯乙炔修飾之氧化亞銅奈米粒子在水相進行光催化芳基硫醚氧化反應
15. 氧化亞銅奈米晶體之晶面對電化學催化氧氣還原反應的影響
 
* *