帳號:guest(3.12.71.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):胡麗蕙
作者(外文):Hu, Li Huei
論文名稱(中文):負載鎳或鈷的中孔洞二氧化矽觸媒與中孔洞鉑鎳合金觸媒之製備與催化研究
論文名稱(外文):Preparation and Catalytic Studies of Nickel- or Cobalt-loaded Mesoporous Silica Materials and Mesoporous Pt-Ni Alloy Materials
指導教授(中文):楊家銘
指導教授(外文):Yang, Chia Min
口試委員(中文):李志甫
彭之皓
口試委員(外文):Lee, Jyh Fu
Peng, Chi How
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023545
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:106
中文關鍵詞:中孔洞二氧化矽鉑鎳合金真空熱處理
外文關鍵詞:mesoporous silicaPt-Ni alloythermal-vacuum treatment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:76
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要是利用片狀的中孔洞二氧化矽SBA-15作為模板,附載鎳或鈷於SBA-15以及製備雙金屬鉑鎳的中孔洞材料。第一部份中,以熔融態的方式含浸鎳或鈷前驅物於模板的孔洞中,首次發現在真空下加熱可生成金屬態的鎳或鈷奈米顆粒,TEM觀察得知生成的奈米顆粒不僅分散度高,且顆粒小,有利於催化反應的應用。控制實驗條件在較低壓的環境與較慢的升溫速率下,我們利用臨場X光粉末繞射、X光吸收光譜與反射式紅外光譜術來研究此還原反應的機制。第二部份利用SBA-15三維連通的孔洞結構,大量含浸熔融態硝酸鎳、經由氫氣還原金屬,再於移除模板時同時加入氯鉑酸,使其行賈凡尼置換反應,得到鉑鎳合金的奈米結構。我們將此材料應用於電催化氧氣還原反應,實驗結果顯示其電催化活性不如商用之碳附載白金觸媒,可能與金屬奈米顆粒團聚而使暴露出的活性表面積下降有關。
This study aims to synthesize platinum-nickel mesoporous materials and nickel- or cobalt-loaded catalysts using platelet-like mesoporous SBA-15 silica as hard template. In the first part of the thesis, we found that highly dispersed and small nickel or cobalt nanoparticles could be formed during the thermal treatment in vacuum after impregnation of the molten salt precursor. The materials were characterized by transmission electron microscopy, and the reduction reaction was studied by in-situ X-ray diffraction, X-ray absorption spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy. The second part of the thesis is the preparation of platinum-nickel replica and the electrocatalytic studies for the oxygen reduction reaction. The catalysts were made by impregnating large amount of nickel nitrate into SBA-15, reducing nickel by hydrogen, and finally replacing part of the metallic nickel by platinum by galvanic replacement during the removal of silica by hydrogen fluoride. We found that the two metals formed alloy, but the alloy nanoparticles did not show very good catalytic activity compared to commercial carbon-supported platinum. The results were probably associated to the decrease of exposed active surface area due to the aggregation of alloy nanoparticles during the catalysis.
第一章 緒論 1
1-1 中孔洞二氧化矽材料 1
1-2 負載金屬奈米顆粒之中孔洞二氧化矽材料 9
1-3 中孔洞金屬材料 14
1-4 中孔洞金屬材料於燃料電池的催化應用 17
1-5 研究動機 21
第二章 實驗部份 22
2-1 實驗藥品 22
2-2 觸媒材料合成 24
2-2-1 中孔洞二氧化矽SBA-15之合成 24
2-2-2 負載鎳或鈷於SBA-15 24
2-2-3 雙金屬鉑鎳之奈米反結構 25
2-3 材料鑑定與分析方法 27
2-3-1 X光粉末繞射(Powder X-ray Diffraction,PXRD) 27
2-3-2 氮氣物理吸脫附法(Nitrogen Physisorption) 28
2-3-3 掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 32
2-3-4 穿透式電子顯微鏡 (Transmission Electron Microscope,TEM) 33
2-3-5 反射式紅外光光譜(Diffuse Reflectance Infrared Fourier Transform Spectroscopy,DRIFTS) 34
2-3-6 感應耦合電漿質譜法(Inductively Coupled Plasma Mass Spectrometry,ICP-MS) 35
2-3-7 X光吸收光譜術(X-ray Adsorption Spectroscopy,XAS) 36
2-3-8 程溫還原法(Temperature Programmed Reduction,TPR) 40
2-4 氧氣還原反應(Oxygen Reduction Reaction,ORR) 41
第三章 結果與討論 45
3-1 中孔洞二氧化矽SBA-15之分析與鑑定 45
3-2 負載鎳或鈷於SBA-15之分析與鑑定 47
3-2-1 臨場 X光粉末繞射鑑定 54
3-2-2 X光吸收光譜鑑定 66
3-2-3 臨場反射式紅外光光譜分析鑑定 70
3-2-4 真空環境中零價鎳、鈷於SBA-15之生成機制探討 76
3-3 中孔洞鉑鎳的反結構之合成與鑑定 79
3-4 電催化氧氣還原反應 85
第四章 結論 91
第五章 參考文獻 92

第一章 緒論 1
1-1 中孔洞二氧化矽材料 1
1-2 負載金屬奈米顆粒之中孔洞二氧化矽材料 9
1-3 中孔洞金屬材料 14
1-4 中孔洞金屬材料於燃料電池的催化應用 17
1-5 研究動機 21
第二章 實驗部份 22
2-1 實驗藥品 22
2-2 觸媒材料合成 24
2-2-1 中孔洞二氧化矽SBA-15之合成 24
2-2-2 負載鎳或鈷於SBA-15 24
2-2-3 雙金屬鉑鎳之奈米反結構 25
2-3 材料鑑定與分析方法 27
2-3-1 X光粉末繞射(Powder X-ray Diffraction,PXRD) 27
2-3-2 氮氣物理吸脫附法(Nitrogen Physisorption) 28
2-3-3 掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 32
2-3-4 穿透式電子顯微鏡 (Transmission Electron Microscope,TEM) 33
2-3-5 反射式紅外光光譜(Diffuse Reflectance Infrared Fourier Transform Spectroscopy,DRIFTS) 34
2-3-6 感應耦合電漿質譜法(Inductively Coupled Plasma Mass Spectrometry,ICP-MS) 35
2-3-7 X光吸收光譜術(X-ray Adsorption Spectroscopy,XAS) 36
2-3-8 程溫還原法(Temperature Programmed Reduction,TPR) 40
2-4 氧氣還原反應(Oxygen Reduction Reaction,ORR) 41
第三章 結果與討論 45
3-1 中孔洞二氧化矽SBA-15之分析與鑑定 45
3-2 負載鎳或鈷於SBA-15之分析與鑑定 47
3-2-1 臨場 X光粉末繞射鑑定 54
3-2-2 X光吸收光譜鑑定 66
3-2-3 臨場反射式紅外光光譜分析鑑定 70
3-2-4 真空環境中零價鎳、鈷於SBA-15之生成機制探討 76
3-3 中孔洞鉑鎳的反結構之合成與鑑定 79
3-4 電催化氧氣還原反應 85
第四章 結論 91
第五章 參考文獻 92
1. Ciesla, U.; Schüth, F., Micropor. Mesopor. Mater. 1999, 27, 131-149.
2. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Science 1998, 279, 548-552.
3. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., J. Am. Chem. Soc. 1998, 120, 6024-6036.
4. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W., J. Am. Chem. Soc. 1992, 114, 10834-10843.
5. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Nature 1992, 359, 710-712.
6. Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O.; Joo, S. H.; Ryoo, R., J. Phys. Chem. B 2002, 106, 1256-1266.
7. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Chem. Mater. 1996, 8, 1682-1701.
8. Wan, Y.; Zhao, Chem. Rev. 2007, 107, 2821-2860.
9. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R., Nature 2000, 408, 449.
10. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Angew. Chem. Int. Ed. 2006, 45, 3216-3251.
11. Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C., Curr. Opin. Colloid Interface Sci. 2003, 8, 109-126.
12. Galarneau, A.; Cambon, H.; Di Renzo, F.; Ryoo, R.; Choi, M.; Fajula, F., New J. Chem. 2003, 27, 73-79.
13. Yu, C.; Fan, J.; Tian, B.; Zhao, D.; Stucky, G. D., Adv. Mater. 2002, 14, 1742-1745.
14. Ji, X.; Lee, K. T.; Monjauze, M.; Nazar, L. F., Chem. Commun. 2008, 4288-4290.
15. Chen, S.-Y.; Jang, L.-Y.; Cheng, S., Chem. Mater. 2004, 16, 4174-4180.
16. Chen, S.-Y.; Tang, C.-Y.; Chuang, W.-T.; Lee, J.-J.; Tsai, Y.-L.; Chan, J. C. C.; Lin, C.-Y.; Liu, Y.-C.; Cheng, S., Chem. Mater. 2008, 20, 3906-3916.
17. Çelik, Ö.; Dag, Ö., Angew. Chem. 2001, 113, 3915-3919.
18. He, Q.; Shi, J.; Zhao, J.; Chen, Y.; Chen, F., J. Mater. Chem. 2009, 19, 6498-6503.
19. Taguchi, A.; Schüth, F., Micropor. Mesopor. Mater. 2005, 77, 1-45.
20. John Meurig Thomas, W. J. T., Principles and Practice of Heterogeneous Catalysis. VCH: New York, 1997.
21. De Rogatis, L.; Cargnello, M.; Gombac, V.; Lorenzut, B.; Montini, T.; Fornasiero, P., ChemSusChem 2010, 3, 24-42.
22. Andreeva, D., Gold Bull. 2002, 35, 82-88.
23. Oh, H. S.; Yang, J. H.; Costello, C. K.; Wang, Y. M.; Bare, S. R.; Kung, H. H.; Kung, M. C., J. Catal. 2002, 210, 375-386.
24. Jacobs, G.; Padro, C. L.; Resasco, D. E., J. Catal. 1998, 179, 43-55.
25. Pinna, F., Catal. Today 1998, 41, 129-137.
26. Cortright, R. D.; Dumesic, J. A., J. Catal. 1994, 148, 771-778.
27. Yao, N.; Pinckney, C.; Lim, S.; Pak, C.; Haller, G. L., Micropor. Mesopor. Mater. 2001, 44–45, 377-384.
28. Cauvel, A.; Brunel, D.; Di Renzo, F.; Garrone, E.; Fubini, B., Langmuir 1997, 13, 2773-2778.
29. Yang, C.-m.; Kalwei, M.; Schüth, F.; Chao, K.-j., Appl. Catal. A-Gen 2003, 254, 289-296.
30. Samanos, B.; Boutry, P.; Montarnal, R., J. Catal. 1971, 23, 19-30.
31. P. Mehnert, C., Chem. Commun. 1997, 2215-2216.
32. Dutta, D.; Dutta, D. K., Appl. Catal. A-Gen 2014, 487, 158-164.
33. Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R., J. Am. Chem. Soc. 2004, 126, 8028-8037.
34. Sasaki, M.; Osada, M.; Higashimoto, N.; Yamamoto, T.; Fukuoka, A.; Ichikawa, M., J. Mol. Catal. A: Chem. 1999, 141, 223-240.
35. Ryoo, R.; Joo, S. H.; Jun, S., J. Phys. Chem. B 1999, 103, 7743-7746.
36. Ding, J.; Chan, K.-Y.; Ren, J.; Xiao, F.-s., Electrochim. Acta 2005, 50, 3131-3141.
37. Wang, H.; Jeong, H. Y.; Imura, M.; Wang, L.; Radhakrishnan, L.; Fujita, N.; Castle, T.; Terasaki, O.; Yamauchi, Y., J. Am. Chem. Soc. 2011, 133, 14526-14529.
38. Saramat, A.; Thormählen, P.; Skoglundh, M.; Attard, G. S.; Palmqvist, A. E. C., J. Catal. 2008, 253, 253-260.
39. Han, J. H.; Choi, H. N.; Park, S.; Chung, T. D.; Lee, W.-Y., Anal. Sci. 2010, 26, 995-1000.
40. Attard, G. S.; Corker, J. M.; Göltner, C. G.; Henke, S.; Templer, R. H., Angew. Chem. Int. Ed. 1997, 36, 1315-1317.
41. Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J. R.; Wang, J. H., Science 1997, 278, 838-840.
42. Shi, Y.; Wan, Y.; Zhao, D., Chem. Soc. Rev. 2011, 40, 3854-3878.
43. Yamauchi, Y.; Momma, T.; Fuziwara, M.; Nair, S. S.; Ohsuna, T.; Terasaki, O.; Osaka, T.; Kuroda, K., Chem. Mater. 2005, 17, 6342-6348.
44. Yamauchi, Y.; Kuroda, K., Chem.-Asian J. 2008, 3, 664-676.
45. Han, Y.-J.; Kim, J. M.; Stucky, G. D., Chem. Mater. 2000, 12, 2068-2069.
46. Liu, Z.; Sakamoto, Y.; Ohsuna, T.; Hiraga, K.; Terasaki, O.; Ko, C. H.; Shin, H. J.; Ryoo, R., Angew. Chem. Int. Ed. 2000, 39, 3107-3110.
47. Sasaki, M.; Osada, M.; Sugimoto, N.; Inagaki, S.; Fukushima, Y.; Fukuoka, A.; Ichikawa, M., Micropor. Mesopor. Mater. 1998, 21, 597-606.
48. Wang, D.; Jakobson, H. P.; Kou, R.; Tang, J.; Fineman, R. Z.; Yu, D.; Lu, Y., Chem. Mater. 2006, 18, 4231-4237.
49. Wang, D.; Luo, H.; Kou, R.; Gil, M. P.; Xiao, S.; Golub, V. O.; Yang, Z.; Brinker, C. J.; Lu, Y., Angew. Chem. Int. Ed. 2004, 43, 6169-6173.
50. Zhang, Z.; Dai, S.; Blom, D. A.; Shen, J., Chem. Mater. 2002, 14, 965-968.
51. Takai, A.; Doi, Y.; Yamauchi, Y.; Kuroda, K., J. Phys. Chem. C 2010, 114, 7586-7593.
52. Yang, C. M.; Sheu, H. S.; Chao, K. J., Adv. Funct. Mater. 2002, 12, 143-148.
53. Carrette, L.; Friedrich, K. A.; Stimming, U., ChemPhysChem 2000, 1, 162-193.
54. Lee, K.; Zhang, L.; Zhang, J., PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer London, 2008.
55. Walcarius, A., Chem. Soc. Rev. 2013, 42, 4098-4140.
56. Chen, Z.; Waje, M.; Li, W.; Yan, Y., Angew. Chem. Int. Ed. 2007, 46, 4060-4063.
57. Tan, Y.; Fan, J.; Chen, G.; Zheng, N.; Xie, Q., Chem. Commun. 2011, 47, 11624-11626.
58. Chen, P.-K.; Lai, N.-C.; Ho, C.-H.; Hu, Y.-W.; Lee, J.-F.; Yang, C.-M., Chem. Mater. 2013, 25, 4269-4277.
59. Lim, B.; Jiang, M.; Yu, T.; Camargo, P. C.; Xia, Y., Nano Res. 2010, 3, 69-80.
60. Wang, H.-H.; Zhou, Z.-Y.; Yuan, Q.; Tian, N.; Sun, S.-G., Chem. Commun. 2011, 47, 3407-3409.
61. Sun, S.; Zhang, G.; Geng, D.; Chen, Y.; Li, R.; Cai, M.; Sun, X., Angew. Chem. Int. Ed. 2011, 50, 422-426.
62. Chen, H. M.; Liu, R.-S.; Lo, M.-Y.; Chang, S.-C.; Tsai, L.-D.; Peng, Y.-M.; Lee, J.-F., J. Phys. Chem. C 2008, 112, 7522-7526.
63. Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K., Angew. Chem. Int. Ed. 2006, 45, 2897-2901.
64. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G., J. Chem. Phys. 2004, 120, 10240-10246.
65. Zhang, J.; Lima, F. H. B.; Shao, M. H.; Sasaki, K.; Wang, J. X.; Hanson, J.; Adzic, R. R., J. Phys. Chem. B 2005, 109, 22701-22704.
66. Cantane, D. A.; Oliveira, F. E. R.; Santos, S. F.; Lima, F. H. B., Appl. Catal. B-Environ 2013, 136-137, 351-360.
67. Li, Y.-Y.; Liu, X.-L.; Yang, D.-J.; Hao, Z.-H.; Wang, Q.-Q., Chin. Phys. Lett. 2015, 32, 024205.
68. Liu, C.-H.; Lai, N.-C.; Lee, J.-F.; Chen, C.-S.; Yang, C.-M., J. Catal. 2014, 316, 231-239.
69. Settle, F., Handbook of instrumental techniques for analytical chemistry. 1997.
70. Grunwaldt, J.-D.; Baiker, A., Phys. Chem. Chem. Phys. 2005, 7, 3526-3539.
71. Lee, S.-J.; Pyun, S.-I.; Lee, S.-K.; Kang, S.-J. L., Isr. J. Chem. 2008, 48, 215-228.
72. Sietsma, J. R. A.; Meeldijk, J. D.; Versluijs-Helder, M.; Broersma, A.; Dillen, A. J. v.; de Jongh, P. E.; de Jong, K. P., Chem. Mater. 2008, 20, 2921-2931.
73. Hofmeister, H.; Miclea, P. T.; Steen, M.; Mörke, W.; Drevs, H., Top. Catal. 2007, 46, 11-21.
74. Richardson, J. T.; Scates, R.; Twigg, M. V., Appl. Catal. A-Gen 2003, 246, 137-150.
75. Wickstrom, T.; Lund, W.; Bye, R., J. Anal. At. Spectrom. 1995, 10, 803-808.
76. Bentley, A. K.; Farhoud, M.; Ellis, A. B.; Nickel, A.-M. L.; Lisensky, G. C.; Crone, W. C., J. Chem. Educ. 2005, 82, 765.
77. Wolters, M.; Daly, H.; Goguet, A.; Meunier, F. C.; Hardacre, C.; Bitter, J. H.; de Jongh, P. E.; de Jong, K. P., J. Phys. Chem. C 2010, 114, 7839-7845.
78. Wolters, M.; Munnik, P.; Bitter, J. H.; de Jongh, P. E.; de Jong, K. P., J. Phys. Chem. C 2011, 115, 3332-3339.
79. Mu, J.; Perlmutter, D. D., Thermochim. Acta 1982, 56, 253-260.
80. Brockner, W.; Ehrhardt, C.; Gjikaj, M., Thermochim. Acta 2007, 456, 64-68.
81. Llewellyn, P. L.; Chevrot, V.; Ragaï, J.; Cerclier, O.; Estienne, J.; Rouquérol, F., Solid State Ionics 1997, 101-103, Part 2, 1293-1298.
82. Taylor, T. J.; Dollimore, D.; Gamlen, G. A.; Barnes, A. J.; Stuckey, M. A., Thermochim. Acta 1986, 101, 291-304.
83. Parler, C. M.; Ritter, J. A.; Amiridis, M. D., J. Non-Cryst. Solids 2001, 279, 119-125.
84. Bard, A. J.; Parsons, R.; Jordan, J., Standard potentials in aqueous solution. CRC press: 1985.
85. Rettew, R. E.; Guthrie, J. W.; Alamgir, F. M., J. Electrochem. Soc. 2009, 156, D513-D516.
86. Solla-Gullon, J.; Rodriguez, P.; Herrero, E.; Aldaz, A.; Feliu, J. M., Phys. Chem. Chem. Phys. 2008, 10, 1359-1373.
87. Subbaraman, R.; Strmcnik, D.; Stamenkovic, V.; Markovic, N. M., J. Phys. Chem. C 2010, 114, 8414-8422.
88. Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; StamenkovicVojislav, R.; Cuesta, A.; Marković, N. M., Nat. Chem. 2010, 2, 880-885.
89. Huerta, F.; Morallón, E.; Quijada, C.; Vázquez, J. L.; Aldaz, A., Electrochim. Acta 1998, 44, 943-948.
90. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M., Science 2007, 315, 493-497.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *