帳號:guest(18.227.111.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林廷華
作者(外文):Lin, Ting Hua
論文名稱(中文):雙鉬金屬五重鍵與炔之[2+2+2]環化加成反應及與有機氯化物之碳-氯鍵活化反應研究
論文名稱(外文):Reactions of the Mo-Mo Quintuple Bonded Complex with Alkynes and Chloro Organics: [2+2+2] Cycloaddition and C-Cl Bond Activation
指導教授(中文):蔡易州
指導教授(外文):Tsai, Yi Chou
口試委員(中文):劉瑞雄
尤禎祥
口試委員(外文):Liu, Rai Shung
Yu, Jen Shiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023530
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:159
中文關鍵詞:雙鉬金屬五重鍵[2+2+2]環化加成反應
外文關鍵詞:Mo-Mo Quintuple Bonded[2+2+2] Cycloaddition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1222
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
本論文著重於研究高立體阻礙的雙氮基脒配基合成出的雙鉬金屬五重鍵Mo2[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (1),與炔類分子進行[2+2+2]環化加成反應,得到頭對尾及尾對尾耦合反應之產物,進一步探討其選擇性與反應機制。
錯合物1與末端炔類反應,皆與兩當量的末端炔類試劑反應。錯合物1與對氟苯基乙炔、對甲氧基苯基乙炔、環丙基乙炔及丙炔酸乙酯反應,皆作[2+2+2]環化加成反應得到六員環頭對尾耦合錯合物Mo2[μ-κ2-3,5-R2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2及尾對尾耦合錯合物Mo2[μ-κ2-3,6-R2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (R=4-FPh (2, 3), 4-MeOPh (4, 5), cyclopropyl (6, 7), COOEt (8))。在錯合物2-5的產率中,可以觀察到對位有推電子基之反應,尾對尾耦合反應之產物明顯較低;反之,對位為拉電子基之反應,會增加尾對尾耦合反應之產率之產率。以此實驗結果可以推測此[2+2+2]環化加成反應之機構與末端炔類上的官能基所產生的電子效應有關。然而,錯合物1與氮-甲基-氮-對甲苯磺醯基-乙炔基胺反應,得到氮硫鍵進行斷裂,形成C4配基與對甲苯磺醯配基的錯合物9,故碳-碳三鍵旁若具有孤對電子,可能會與雙鉬金屬五重鍵反應。此外,錯合物1、內炔與末端炔類反應,也可進行[2+2+2]環化加成反應。錯合物1與二苯基乙炔或苯基丙炔先進行[2+2]環化加成反應,得到四員環C2Mo2錯合物Mo2(μ-κ2-RCCPh)[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (R=Ph (10), Me (14))。接著,錯合物10及錯合物14分別與1-戊炔、苯乙炔及丙炔酸乙酯反應,皆作[4+2]環化加成反應得到六員環碳-碳耦合錯合物Mo2[μ-κ2-3,4-Ph2-6-RC4H][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (R=Pr (11), Ph (12), COOEt (13))、Mo2[μ-κ2-3-Ph-4-Me-6-RC4H][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (R=Pr (15), Ph (16))以及Mo2[μ-κ2-3-R-6-Me-5-PhC4H][μ-κ2-HC(N-2,6-iPr2-C6H3)2]2 (R=Ph (15), COOEt (16))。由錯合物11-13可以得知,末端炔類加成之位向受立體阻礙的影響,而從錯合物15-18可以得知,內炔加成之位向與末端炔類的電子效應有關。簡而言之,錯合物1、內炔與末端炔類[2+2+2]環化加成反應中,內炔的位向受電子效應影響,末端炔的位向受立體效應影響。另外,四員環錯合物10與三甲基乙腈反應,得到二苯乙烯以鄰位配位在鉬金屬上的錯合物Mo2(trans-2-styryl-C6H5)[μ-κ2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(κ1-CH2)CH3-C6H3)][μ-κ2-HC(N-2,6-iPr2C6H3)2] (21)。錯合物10與苯甲醛反應,可以得到[2+2+2]環化加成反應的六員環錯合物Mo2(H)[μ-κ2-O(PhC)2PhC][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (22),由此可知,較富含電子基的二苯乙炔可以對較缺電子基之羰基進行親核加成(nucleophilic addition)。最後,六員環錯合物Mo2[μ-κ2-3,5-Pr2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (24a)與九羰基二鐵或與乙腈反應,會得到一個分子的羰基配位在鉬金屬的錯合物Mo2(CO)[μ-κ2-3,5-Pr2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (24b),以及兩個分子的乙腈配位在鉬金屬的錯合物Mo2(MeCN)2[μ-κ2-3,5-Pr2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (24c),此兩個皆為可逆反應,且由X-射線繞射分析中,可以觀察到配基配位在鉬金屬時,d軌域的電子貢獻在配基上,造成貢獻較少於六員環的d,故碳-鉬鍵增長。
另外,錯合物1與四氯乙烯反應,可以得到具彎曲型的亞乙烯配基錯合物Mo2(Cl)2[μ-κ2-HC(N-2,6-iPr2C6H3)2][μ-κ2-HC(N-2,6-iPr2C6H3) (N-2-iPr-6-C(κ1-CCH)(CH3)2C6H3)] (26),其雙鉬金屬亞乙烯基的反應性是令人感興趣的。
This thesis focus on the study of the [2+2+2] cycloaddition reaction of the low-coordinate and steric hindrance quintuple bonded dimodybedenum complex Mo2[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (1) with alkynes. It has produced six-membered complexes by head to tail C-C coupling and tail to tail C-C coupling. Further, explore the mechanism and regioseletivity.
The reactions of complex 1 with terminal alkynes othen give products by two terminal alkynes. For example, reaction of complex 1 with 4-fluorophenylacetylene, 4-methoxyphenylacetylene, cyclopropylacetylene, or ethyl propiolate can give six-membered complex of [2+2+2] cycloaddition reaction by head to tail C-C coupling Mo2[μ-κ2-3,5-R2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 and tail to tail C-C coupling Mo2[μ-κ2-3,6-R2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (R = 4-FPh (2, 3), 4-MeOPh (4, 5), cyclopropyl (6, 7), COOEt (8)). For Complexes 2-5, low yield by tail to tail coupling is observed reaction of 1 with para is electron donating group phenylacetylene. But, high yield by tail to tail coupling is observed reaction of complex 1 with para is electron withdrawing group phenylacetylene. In addition to experimental evidence, the mechanism of [2+2+2] cycloaddition reaction is affected by electronic effect for fuctional group of terminal alkynes. However, reaction of complex 1 with N-(methyl)-N-(p-toluenesulfonyl)-ethynylamine gives complex 9 which undergoes cleavage of nigrogen-sulfur bond and formed C4 ligand and tosylate ligand. So, if it has lone pair electron next to carbon-carbon triple bond, it can react with dimodybedenum quintuple bonded. However, reactions of complex 1 with internal alkyne and terminal alkyne are [2+2+2] cycloaddition reactions. First, reaction of complex 1 with diphenylacetylene or phenylpropyne gives four-membered complex for [2+2] cycloaddition reaction, Mo2(μ-κ2-RCCPh)[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (R = Ph (10), Me (14)). Respectively, reactions of complex 10 or complex 14 with 1-pentyne, phenylacetylene, or ethyl propiolate always give six-member complexes, Mo2[μ-κ2-3,4-Ph2-6-RC4H][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (R = Pr (11), Ph (12), COOEt (13)), Mo2[μ-κ2-3-Ph-4-Me-6-RC4H][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (R = Pr (15), Ph (16)) and Mo2[μ-κ2-3-R-6-Me-5-PhC4H][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (R = Ph (15), COOEt (16)). In addition to evidence of complex 11-13, the stereo orientation of terminal alkyne is affented by steric hindrance. In addition to evidence of complex 15-18, the stereo orientation of internal alkyne affected by electronic effect. In short, the electronic effect controls the stereo orientation of first alkyne and the steric effect controls the stereo orientation of second alkyne. In addition, the reaction of complex 10 with pivalonitrile gives complex, Mo2(trans-2-styryl-C6H5)[μ-κ2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(κ1-CH2)CH3-C6H3)][μ-κ2-HC(N-2,6-iPr2C6H3)2] (21), in which the ortho-activated diphenylethene group coordinates to Mo center. The reaction of complex 10 with benzaldehyde gives six-membered complex, Mo2(H)[μ-κ2-O(PhC)2PhC][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (22). From this reaction, we can know the electron-rich diphenylacetylene attacks to electron-withdrawing carbon of benzaldehyde by nucleophilic addition. Finally, The reaction of six-membered complex Mo2[μ-κ2-3,5-Pr2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (24a) with Fe2(CO)9 or acetonitrile give two complexes, Mo2(CO)[μ-κ2-3,5-Pr2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (24b), in which a carbon oxide coordinates to Mo center, and Mo2(MeCN)2[μ-κ2-3,5-Pr2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (24c), in which acetonitrile coordinates to Mo centers, respectively. Two reactions are reversible reaction. The molecular structures of complex 24b and complex 24c are determined by X-ray crystallography. The carbon-molybdenum bond is elongated. Because d-orbital electron contributes to back bonding of carbon oxide or acetonitrile, and little contributes to d-electron of six-membered ring.
In addition, the reaction of complex 1 with tetrachloroethylene gives complex, Mo2(Cl)2[μ-κ2-HC(N-2,6-iPr2C6H3)2][μ-κ2-HC(N-2,6-iPr2C6H3) (N-2-iPr-6-C(κ1-CCH)(CH3)2C6H3)] (26), in which bent vinylidene ligand coordinates to a Mo center. We are interested in reactivity of 26.
目錄 V
圖目錄 IX
流程圖目錄 XI
表目錄 XIV
第一章 緒論 1
1-1. 雙金屬多重鍵的發展 1
1-2. 雙金屬五重鍵 2
1-3. 雙金屬五重鍵的發展 4
1-3-1. 雙金屬五重鍵錯合物活化疊氮分子 7
1-3-2. 雙金屬五重鍵錯合物活化炔類分子 9
1-3-3. 雙金屬五重鍵錯合物活化腈類分子 12
1-3-4. 雙金屬五重鍵錯合物活化醯鹵類分子 13
第二章 雙鉬五重鍵錯合物與炔類之反應性探討 15
2-1. 前言 15
2-2. 雙鉬五重鍵錯合物與末端炔類之電子效應的探討 17
2-2-1. Mo2[μ-κ2-3,5-(4-FPh)2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (2)和 Mo2[μ-κ2-3,6-(4-FPh)2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (3)的合成與探討 17
2-2-2. Mo2[μ-κ2-3,5-(4-MeOPh)2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (4)和Mo2[μ-κ2-3,6-(4-MeOPh)2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (5)的合成與探討 18
2-2-3. Mo2[μ-κ2-3,5-(cyclopropyl)2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (6)和Mo2[μ-κ2-3,6-(cyclopropyl)2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (7)的合成與探討 20
2-2-4. Mo2[μ-κ2-3,5-(COOEt)2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (8)的合成與探討 24
2-2-5. Mo2[μ-κ2-O2S-4-MeC6H4][μ-κ3-(N-Me)-4-NMe(4-MePhSO2)- C4H2N][2-HC(N-2,6-iPr2C6H3)2]2 (9)的合成與探討 27
2-2-6. 結論 29
2-2-7. 實驗合成步驟 30
2-3. 雙鉬五重鍵錯合物、內炔及末端炔之不對稱[2+2+2]環化加成反應的探討 37
2-3-1. Mo2(μ-κ2-PhCCPh)[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (10)的合成與探討 41
2-3-2. Mo2[μ-κ2-3,4-Ph2-6-PrC4H][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (11)的合成與探討 43
2-3-3. Mo2[μ-κ2-3,4,6-Ph3C4H][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (12)的合成與探討 46
2-3-4. Mo2[μ-κ2-3-COOEt-5,6-Ph2C4H][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (13)的合成與探討 48
2-3-5. Mo2(μ-κ2-MeCCPh)[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (14)的合成與探討 51
2-3-6. Mo2[μ-κ2-4-Me-3-Ph-6-PrC4H][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (15)的合成與探討 55
2-3-7. Mo2[μ-κ2-4-Me-3,6-Ph2C4H][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (16)的合成與探討 58
2-3-8. Mo2[μ-κ2-3-COOEt-6-Me-5-PhC4H][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (18)的合成與探討 60
2-3-9. Mo2(μ-2-1,2:2-4,5-PhCCTMS)[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (19)的合成與探討 63
2-3-10. 結論 66
2-3-11. 實驗合成步驟 67
2-4. 雙鉬五重鍵錯合物與內炔之[2+2+2]環化加成反應的探討 78
2-4-1. Mo2[μ-κ2-4,5-Me2-3,6-Ph2C4][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (20)的合成與探討 78
2-4-2. 實驗合成步驟 81
2-5. 雙鉬四重鍵錯合物與腈類、或醛類之反應的探討 82
2-5-1. Mo2(trans-2-styryl-C6H4)[μ-κ2-HC(N-2,6-iPr2C6H3)(N-2-iPr-6-CH(κ1-CH2)CH3-C6H3)][μ-κ2-HC(N-2,6-iPr2C6H3)2] (21)的合成與探討 84
2-5-2. Mo2(H)[μ-κ2-O(PhC)2PhC][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (22)和Mo2[(OCHPh)2]2[μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (23)的合成與探討 87
2-5-3. 實驗合成步驟 93
2-6. 雙鉬多重鍵-環化錯合物與九羰基二鐵之反應性探討 96
2-6-1. Mo2(CO)[μ-κ2-3,5-Pr2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (24b)的合成與探討 96
2-6-2. Mo2(MeCN)2[μ-κ2-3,5-Pr2C4H2][μ-κ2-HC(N-2,6-iPr2C6H3)2]2 (24c)的合成與探討 99
2-6-3. Mo2(CO)3[κ2-PhCCPh][κ2-HC(N-2,6-iPr2C6H3)2]2 (25)的合成與探討 101
2-6-4. 實驗合成步驟 102
2-7. 總結 105
第三章 雙鉬金屬五重鍵與有機氯化物之碳-氯鍵活化 反應的合成與探討 109
3-1. 前言 109
3-2. Mo2(Cl)2[μ-κ2-HC(N-2,6-iPr2C6H3)2][μ-κ2-HC(N-2,6-iPr2C6H3) (N-2-iPr-6-C(κ1-CCH)(CH3)2C6H3)] (26)的合成與探討 111
3-3. 實驗合成步驟 116
第四章 其他嘗試 118
4-1. 雙鉬五重鍵錯合物與9-硼二環[3.3.1]壬烷之反應[TH-2-26-2d][a17033] 118
4-2. 雙鉬五重鍵錯合物與雙矽雙鍵錯合物之反應[TH-1-28-5] 119
4-3. 雙鉬五重鍵錯合物與鋁錯合物之反應[TH-1-74-14] 119
4-4. 雙鉬五重鍵錯合物與硼錯合物之反應[TH-1-82-19] 120
4-5. 雙鉬五重鍵錯合物與異腈之反應[TH-1-171-7e][ch16702][TH-1-84-21b] 120
4-6. 雙鉬五重鍵錯合物之氧化反應[TH-2-59-15d] 122
4-7. 雙鉬五重鍵錯合物與硝基苯乙烯之反應[TH-2-58-8i] 122
4-8. 雙鉬五重鍵錯合物與碳炔之反應 122
4-9. 雙鉬五重鍵錯合物與氮炔之反應 123
4-10. 雙鉬五重鍵錯合物與烯丙醯氯之反應[TH-2-56-1N] 123
4-11. 雙鉬五重鍵錯合物與苯脲之反應[TH-1-194-51abcd][a16738][ch16743] 125
4-12. 雙鉬四重鍵錯合物之還原反應 127
4-13. 雙鉬四重鍵錯合物之甲基化反應 130
4-14. 雙鉬四重鍵錯合物與內炔之[2+2+2]環化加成反應[TH-2-110-112a][TH-2-104-111a] 135
4-15. 雙鉬四重鍵錯合物(19)與末端炔之反應 136
參考文獻 140
晶體結構資料表 143
1. Cotton, F. A.; Curtis, N. F.; Johnson, B. F. G.; Mague, J. T.; Wood, J. S.; Harris, C. B.; Robinson, W. R.; Lippard, S. J. Science 1964, 145, 1305.
2. Cotton, F. A.; Lippard, S. J. J. Am. Chem. Soc. 1964, 86, 4497.
3. Lawton, D.; Mason, R. J. Am. Chem. Soc. 1965, 87, 921.
4. Cotton, F. A. M., L. A.; Walton, R. A. Multiple Bonds Between Metal Atoms; 3rd ed.; Springer, 2005.
5. Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science 2005, 310, 844.
6. Wolf, R.; Ni, C.; Nguyen, T.; Brynda, M.; Long, G. J.; Sutton, A. D.; Fischer, R. C.; Fettinger, J. C.; Hellman, M.; Pu, L.; Power, P. P. Inorg. Chem. 2007, 46, 11277.
7. Kreisel, K. A.; Yap, G. P. A.; Dmitrenko, O.; Landis, C. R.; Theopold, K. H. J. Am. Chem. Soc. 2007, 129, 14162.
8. Noor, A.; Wagner, F. R.; Kempe, R. Angew. Chem. Int. Ed. 2008, 47, 7246.
9. Noor, A.; Glatz, G.; Mueller, R.; Kaupp, M.; Demeshko, S.; Kempe, R. Z. Anorg. Allg. Chem. 2009, 635, 1149.
10. Tsai, Y. C.; Hsu, C. W.; Yu, J. S. K.; Lee, G. H.; Wang, Y.; Kuo, T. S. Angew. Chem. Int. Ed. 2008, 47, 7250.
11. Hsu, C. W.; Yu, J. S. K.; Yen, C. H.; Lee, G. H.; Wang, Y.; Tsai, Y. C. Angew. Chem. Int. Ed. 2008, 47, 9933.
12. Tsai, Y. C.; Chen, H. Z.; Chang, C. C.; Yu, J. S. K.; Lee, G. H.; Wang, Y.; Kuo, T. S. J. Am. Chem. Soc. 2009, 131, 12534.
13. Ni, C.; Ellis, B. D.; Long, G. J.; Power, P. P. Chem. Commun. 2009, 2332.
14. Elschenbroich, C. Organometallchemie; 5th ed.; Teubner, 2005.
15. Fallis, A. G.; Forgione, P. Tetrahedron 2001, 57, 5899.
16. Noor, A.; Glatz, G.; Mueller, R.; Kaupp, M.; Demeshko, S.; Kempe, R. Nat. Chem. 2009, 1, 322.
17. 顏君旭, 國立清華大學化學研究所碩士論文. 2009.
18. 劉士誠, 國立清華大學化學研究所碩士論文. 2010.
19. Noor, A.; Tamne, E. S.; Qayyum, S.; Bauer, T.; Kempe, R. Chem. Eur. J. 2011, 17, 6900.
20. Shen, J.; Yap, G. P. A.; Werner, J.-P.; Theopold, K. H. Chem. Commun. 2011, 47, 12191.
21. Calhorda, M. J.; Hoffmann, R. Organometallics 1986, 5, 2181.
22. Chisholm, M. H.; Lynn, M. A. J. Organomet. Chem. 1998, 550, 141.
23. Chen, H. Z.; Liu, S. C.; Yen, C. H.; Yu, J. S. K.; Shieh, Y. J.; Kuo, T. S.; Tsai, Y. C. Angew. Chem. Int. Ed. 2012, 51, 10342.
24. 陳宏章, 國立清華大學化學研究所博士論文. 2011.
25. 陳思妏, 國立清華大學化學研究所碩士論文. 2011.
26. 莊馥戎, 國立清華大學化學研究所碩士論文. 2014.
27. Chen, H. G.; Hsueh, H. W.; Kuo, T. S.; Tsai, Y. C. Angew. Chem. Int. Ed. 2013, 52, 10256.
28. 薛翔文, 國立清華大學化學研究所碩士論文. 2013.
29. 陳漢宮, 國立清華大學化學研究所碩士論文. 2013.
30. Kekulé, A. Bull. Soc. Chim. Fr. 1865, 3, 98.
31. Thorn, D. L.; Hoffmann, R. Nouv. J. Chim. 1979, 3, 39.
32. Chen, Y.; Sakaki, S. Dalton Trans. 2014, 43, 11478.
33. Kakeya, M.; Fujihara, T.; Kasaya, T.; Nagasawa, A. Organometallics 2006, 25, 4131.
34. Ozerov, O. V.; Patrick, B. O.; Ladipo, F. T. J. Am. Chem. Soc. 2000, 122, 6423.
35. Paneque, M.; Posadas, C. M.; Poveda, M. L.; Rendon, N.; Santos, L. L.; Alvarez, E.; Salazar, V.; Mereiter, K.; Onate, E. Organometallics 2007, 26, 3403.
36. Hill, J. E.; Balaich, G.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1993, 12, 2911.
37. Yamamoto, Y.; Ishii, J. I.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2004, 126, 3712.
38. Yamamoto, Y.; Ishii, J. I.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005, 127, 9625.
39. Takahashi, T.; Tsai, F. Y.; Li, Y. Z.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 1999, 121, 11093.
40. Takahashi, T.; Xi, Z. F.; Yamazaki, A.; Liu, Y. H.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 1998, 120, 1672.
41. Takahashi, T.; Kotora, M.; Xi, Z. F. J. Chem. Soc. Chem. Commun. 1995, 361.
42. Kinjo, R.; Ichinohe, M.; Sekiguchi, A.; Takagi, N.; Sumimoto, M.; Nagase, S. J. Am. Chem. Soc. 2007, 129, 7766.
43. Hoffman, D. M.; Hoffmann, R.; Fisel, C. R. J. Am. Chem. Soc. 1982, 104, 3858.
44. Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787.
45. Heller, B.; Hapke, M. Chem. Soc. Rev. 2007, 36, 1085.
46. Henry, G. D. Tetrahedron 2004, 60, 6043.
47. Ren, S.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2012, 134, 3242.
48. Quan, Y.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 18742.
49. Zhang, J.; Quan, Y.; Lin, Z.; Xie, Z. Organometallics 2014, 33, 3556.
50. Tanaka, K.; Otake, Y.; Sagae, H.; Noguchi, K.; Hirano, M. Angew. Chem. Int. Ed. 2008, 47, 1312.
51. Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007, 46, 5598.
52. King, A. O.; Okukado, N.; Negishi, E. I. J. Chem. Soc., Chem. Commun. 1977, 683.
53. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
54. Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437.
55. Liu, L. F.; Zhang, Y. H.; Wang, Y. G. J. Org. Chem. 2005, 70, 6122.
56. Lipshutz, B. H.; Petersen, T. B.; Abela, A. R. Org. Lett. 2008, 10, 1333.
57. Han, J.; Liu, Y.; Guo, R. J. Am. Chem. Soc. 2009, 131, 2060.
58. Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581.
59. Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.
60. Dieck, H. A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 1133.
61. Wakatsuki, Y. J. Org. Chem 2004, 689, 4092.
62. King, R. B. Coord. Chem. Rev. 2004, 248, 1533.
63. Antonova, A. B. Coord. Chem. Rev. 2007, 251, 1521.
64. Bruce, M. I. Chem. Rev. 1991, 91, 197.
65. Stoffelbach, F.; Saurenz, D.; Poli, R. Eur. J. Inorg. Chem. 2001, 2699.
66. Krahulic, K. E.; Enright, G. D.; Parvez, M.; Roesler, R. J. Am. Chem. Soc. 2005, 127, 4142.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *