帳號:guest(18.191.176.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王瑋皜
作者(外文):Wang, Wei Hao
論文名稱(中文):以天然化學連接法合成不具有半胱胺酸單元之胜肽
論文名稱(外文):Cysteine-Free Native Chemical Ligation for the Synthesis of Peptides
指導教授(中文):林俊成
指導教授(外文):Lin, Chun Cheng
口試委員(中文):陳佩燁
林伯樵
口試委員(外文):Chen, Rita
Lin, Po Chiao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023527
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:276
中文關鍵詞:胜肽天然化學連接法光化學天門冬胺酸
外文關鍵詞:peptidenative chemical ligationphotochemistryaspartic acid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:305
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
天然化學連接法 (native chemical ligation, NCL) 早期被發現可用於含有半胱胺酸 (cysteine, Cys) 序列之胜肽 (peptide) 合成上,本論文利用此反應,將含有硫醇 (thiol) 的光解輔助基團修飾於天門冬胺酸 (aspartic acid, Asp) 之側鏈 (side chain),以序列為H-AA1-Asp(RSH)-Glu-OH的三肽 (tripeptide) 與C端修飾為硫酯基 (thioester) 之胺基酸Cbz-AA2-SPh進行模型研究 (model study),透過側鏈輔助以NCL連接。AA2於三肽N端建構四肽 (tetrapeptide)。透過五種AA1 (Gly, Val, Ser, Asp, His) 及六種AA2 (Gly, Ser, Phe, Leu, Pro, His) 經排列組合進行NCL反應性探討,得知三肽的N端若為纈胺酸 (valine, Val),因立障阻礙而不利於連接反應 (ligation)。最後四肽產物透過溫和的紫外光 (ultraviolet, UV) 照射,移除輔助基得四肽Cbz-AA2-AA1-Asp-Glu-OH,但當天門冬胺酸之N端或C端連接絲胺酸 (serine, Ser) 時,容易於光解 (photocleavage) 時,產生大量副產物。
Native Chemical Ligation (NCL) is a powerful method for peptide synthesis. Originally, NCL occurs between C-terminal thioester and N-terminal cysteine. In this thesis, the thiol containing auxiliaries were assembled at the side-chain of aspartic acid (Asp). The thiol protected Asps were used as a building block to synthesize tripeptides H-AA1-Asp(RSH)-Glu-OH (AA1 = Gly, Val, Ser, Asp, His) which were then reacted with thioester, Cbz-AA2-SPh (AA2 = Gly, Ser, Phe, Leu, Pro, His), by NCL. Photo-irradiation was applied to remove the auxiliaries after ligation to afford tetrapeptides Cbz-AA2-AA1-Asp-Glu-OH. The results showed that the thiol containing auxiliary at Asp can assist the amide bond formation by NCL with moderate to good yields, except that the N-terminal amino acid of tripeptides was valine due to steric hindrance. However, when a serine next by Asp (at either N- or C-terminal), uncharacterized side-product was obtained after photo-irradiation.
目錄 i
圖目錄 iii
表目錄 v
流程目錄 vi
胺基酸總表 vii
縮寫對照表 viii
第一章 緒論 1
1-1 前言 1
1-2 天然化學連接法之起源 1
1-3 天然化學連接法的發展性及限制 2
1-4 不需半胱胺酸之天然化學連接法 4
1-4-1 以自由基方式移除硫醇輔助基 5
1-4-2 光解輔助基團 8
1-4-4 醣輔助連接法 9
1-4-5 側鏈輔助連接法 13
1-5 以固相多肽合成法合成C端為硫酯基之胜肽 15
1-5-1 樹酯之選擇 16
1-5-2 硫醇離去基之選擇 17
1-5-3 硫醇離去基之替代基團 20
1-5-4 硫醇催化劑 21
1-6 以化學動力學控制天然化學連接法 22
1-7 應用於紅血球生成素衍生物之合成 24
第二章 研究動機與構想 26
2-1 於天門冬胺酸側鏈引入光解輔助基團 26
2-2 連續進行兩次醣輔助連接法合成醣胜肽 28
第三章 結果與討論 30
3-1 合成胜肽前驅物 30
3-1-1 光解輔助基團 30
3-1-2 含天門冬胺酸之胜肽骨架 32
3-1-3 結合胜肽骨架及光解輔助基團 34
3-1-4 將胺基酸之羧酸修飾為硫酯基 35
3-2 將側鏈輔助連接法條件最佳化 36
3-2-1 移除光解輔助基團上之甲基 38
3-2-2 增大分子內醯基遷移之環數 39
3-2-3 合成不同胜肽前驅物 41
3-2-4 不同胺基酸之間結合的效率差異 43
3-2-5 反應機構探討 45
3-3 合成醣體前驅物 49
3-3-1 最終以酸去保護獲得醣體前驅物 50
3-3-2 最終以鹼去保護獲得醣體前驅物 54
3-3-3 最終以還原條件去保護獲得醣體前驅物 55
3-3-4 醣體前驅物之結構不穩定 56
3-4 未來展望 57
3-4-1 探討分子內醯基遷移之環數影響 57
3-4-2 改善羧酸被修飾為硫酯基之胜肽水溶性 58
3-4-3 透過固相多肽合成法建構真實例子 59
3-4-4 將光解輔助基團應用於其它胺基酸 60
3-4-5 以光解基團保護醣體不穩定之胺基 61
第四章 實驗部分 63
4-1 一般實驗方法 63
4-1-1 核磁共振光譜 63
4-1-2 質譜 63
4-1-3 薄層色層分析法 63
4-1-4 製備級薄層色層分析法 64
4-1-5 管柱層析法 64
4-1-6 化學藥品 64
4-2 使用高效液相層析法監控反應並純化產物 65
4-2-1 沖提系統 65
4-2-2 儀器與管柱 65
4-2-3 分析及純化條件 65
4-3 實驗步驟及光譜資料 66
參考文獻 123
光譜附錄 129
1.Bokelmann, E.; Bauer, L.; Lang, H. U.; Lau, H.; Wieland, T., Über peptidsynthesen. 8. mitteilung bildung von S-haltigen peptiden durch intramolekulare wanderung von aminoacylresten. Justus. Liebigs. Ann. Chem. 1953, 583, 129-49.
2.Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-54.
3.Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B., Synthesis of proteins by native chemical ligation. Science 1994, 266, 776-9.
4.Schnolzer, M.; Kent, S. B., Constructing proteins by dovetailing unprotected synthetic peptides: backbone-engineered HIV protease. Science 1992, 256, 221-5.
5.Hackenberger, C. P.; Schwarzer, D., Chemoselective ligation and modification strategies for peptides and proteins. Angew. Chem. Int. Ed. 2008, 47, 10030-74.
6.Yan, L. Z.; Dawson, P. E., Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 2001, 123, 526-33.
7.Crich, D.; Banerjee, A., Native chemical ligation at phenylalanine. J. Am. Chem. Soc. 2007, 129, 10064-5.
8.Haase, C.; Rohde, H.; Seitz, O., Native chemical ligation at valine. Angew. Chem. Int. Ed. 2008, 47, 6807-10.
9.Malins, L. R.; Cergol, K. M.; Payne, R. J., Peptide ligation-desulfurization chemistry at arginine. Chembiochem 2013, 14, 559-63.
10.Tan, Z.; Shang, S.; Danishefsky, S. J., Insights into the finer issues of native chemical ligation: an approach to cascade ligations. Angew. Chem. Int. Ed. 2010, 49, 9500-3.
11.Thompson, R. E.; Chan, B.; Radom, L.; Jolliffe, K. A.; Payne, R. J., Chemoselective peptide ligation-desulfurization at aspartate. Angew. Chem. Int. Ed. 2013, 52, 9723-7.
12.Chen, J.; Wan, Q.; Yuan, Y.; Zhu, J.; Danishefsky, S. J., Native chemical ligation at valine: a contribution to peptide and glycopeptide synthesis. Angew. Chem. Int. Ed. 2008, 47, 8521-4.
13. Yang, R.; Pasunooti, K. K.; Li, F.; Liu, X. W.; Liu, C. F., Dual native chemical ligation at lysine. J. Am. Chem. Soc. 2009, 131, 13592-3.
14. Chen, J.; Wang, P.; Zhu, J.; Wan, Q.; Danishefsky, S. J., A program for ligation at threonine sites: application to the controlled total synthesis of glycopeptides. Tetrahedron 2010, 66, 2277-83.
15.Siman, P.; Karthikeyan, S. V.; Brik, A., Native chemical ligation at glutamine. Org. Lett. 2012, 14, 1520-3.
16.Cergol, K. M.; Thompson, R. E.; Malins, L. R.; Turner, P.; Payne, R. J., One-pot peptide ligation-desulfurization at glutamate. Org. Lett. 2014, 16, 290-3.
17.Ajish Kumar, K. S.; Haj-Yahya, M.; Olschewski, D.; Lashuel, H. A.; Brik, A., Highly efficient and chemoselective peptide ubiquitylation. Angew. Chem. Int. Ed. 2009, 48, 8090-4.
18.Shang, S.; Tan, Z.; Dong, S.; Danishefsky, S. J., An advance in proline ligation. J. Am. Chem. Soc. 2011, 133, 10784-6.
19.Malins, L. R.; Cergol, K. M.; Payne, R. J., Chemoselective sulfenylation and peptide ligation at tryptophan. Chemical Science 2014, 5, 260-6.
20.Metanis, N.; Keinan, E.; Dawson, P. E., Traceless ligation of cysteine peptides using selective deselenization. Angew. Chem. Int. Ed. 2010, 49, 7049-53.
21.Malins, L. R.; Payne, R. J., Synthesis and utility of beta-selenol-phenylalanine for native chemical ligation-deselenization chemistry. Org. Lett. 2012, 14, 3142-5.
22.Townsend, S. D.; Tan, Z.; Dong, S.; Shang, S.; Brailsford, J. A.; Danishefsky, S. J., Advances in proline ligation. J. Am. Chem. Soc. 2012, 134, 3912-6.
23.Kawakami, T.; Aimoto, S., A photoremovable ligation auxiliary for use in polypeptide synthesis. Tetrahedron Lett. 2003, 44, 6059-61.
24.Marinzi, C.; Offer, J.; Longhi, R.; Dawson, P. E., An o-nitrobenzyl scaffold for peptide ligation: synthesis and applications. Bioorg. Med. Chem. 2004, 12, 2749-57.
25.Chatterjee, C.; McGinty, R. K.; Pellois, J. P.; Muir, T. W., Auxiliary-mediated site-specific peptide ubiquitylation. Angew. Chem. Int. Ed. 2007, 46, 2814-8.
26.Nadler, C.; Nadler, A.; Hansen, C.; Diederichsen, U., A Photocleavable Auxiliary for Extended Native Chemical Ligation. Eur. J. Org. Chem. 2015, 3095-102.
27.Brik, A.; Ficht, S.; Yang, Y. Y.; Bennett, C. S.; Wong, C. H., Sugar-assisted ligation of N-linked glycopeptides with broad sequence tolerance at the ligation junction. J. Am. Chem. Soc. 2006, 128, 15026-33.
28.Brik, A.; Yang, Y. Y.; Ficht, S.; Wong, C. H., Sugar-assisted glycopeptide ligation. J. Am. Chem. Soc. 2006, 128, 5626-7.
29.Payne, R. J.; Ficht, S.; Tang, S.; Brik, A.; Yang, Y. Y.; Case, D. A.; Wong, C. H., Extended sugar-assisted glycopeptide ligations: development, scope, and applications. J. Am. Chem. Soc. 2007, 129, 13527-36.
30.Lutsky, M. Y.; Nepomniaschiy, N.; Brik, A., Peptide ligation via side-chain auxiliary. Chem. Commun. 2008, 1229-31.
31.(a) Kumar, K. S.; Harpaz, Z.; Haj-Yahya, M.; Brik, A., Side-chain assisted ligation in protein synthesis. Bioorg .Med. Chem. Lett. 2009, 19, 3870-4; (b) Spasser, L.; Ajish Kumar, K. S.; Brik, A., Scope and limitation of side-chain assisted ligation. J. Pept. Sci. 2011, 17, 252-5.
32. Warren, J. D.; Miller, J. S.; Keding, S. J.; Danishefsky, S. J., Toward fully synthetic glycoproteins by ultimately convergent routes: a solution to a long-standing problem. J. Am. Chem. Soc. 2004, 126, 6576-8.
33.Chen, G.; Warren, J. D.; Chen, J.; Wu, B.; Wan, Q.; Danishefsky, S. J., Studies related to the relative thermodynamic stability of C-terminal peptidyl esters of O-hydroxy thiophenol: emergence of a doable strategy for non-cysteine ligation applicable to the chemical synthesis of glycopeptides. J. Am. Chem. Soc. 2006, 128, 7460-2.
34.Zhang, L. S.; Tam, J. P., Lactone and lactam library synthesis by silver ion-assisted orthogonal cyclization of unprotected peptides. J. Am. Chem. Soc. 1999, 121, 3311-20.
35.Botti, P.; Villain, M.; Manganiello, S.; Gaertner, H., Native chemical ligation through in situ O to S acyl shift. Org. Lett. 2004, 6, 4861-4.
36.Boll, E.; Drobecq, H.; Ollivier, N.; Blanpain, A.; Raibaut, L.; Desmet, R.; Vicogne, J.; Melnyk, O., One-pot chemical synthesis of small ubiquitin-like modifier protein-peptide conjugates using bis(2-sulfanylethyl)amido peptide latent thioester surrogates. Nat. Protoc. 2015, 10, 269-92.
37.Backes, B. J.; Virgilio, A. A.; Ellman, J. A., Activation method to prepare a highly reactive acylsulfonamide ''safety-catch'' linker for solid-phase synthesis. J. Am. Chem. Soc. 1996, 118, 3055-6.
38.Zheng, J. S.; Tang, S.; Qi, Y. K.; Wang, Z. P.; Liu, L., Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat. Protoc. 2013, 8, 2483-95.
39.Johnson, E. C.; Kent, S. B., Insights into the mechanism and catalysis of the native chemical ligation reaction. J. Am. Chem. Soc. 2006, 128, 6640-6.
40.Thompson, R. E.; Liu, X.; Alonso-Garcia, N.; Pereira, P. J.; Jolliffe, K. A.; Payne, R. J., Trifluoroethanethiol: an additive for efficient one-pot peptide ligation-desulfurization chemistry. J. Am. Chem. Soc. 2014, 136, 8161-4.
41.Bang, D.; Pentelute, B. L.; Kent, S. B., Kinetically controlled ligation for the convergent chemical synthesis of proteins. Angew. Chem. Int. Ed. 2006, 45, 3985-8.
42.Wang, P.; Dong, S.; Shieh, J. H.; Peguero, E.; Hendrickson, R.; Moore, M. A.; Danishefsky, S. J., Erythropoietin derived by chemical synthesis. Science 2013, 342, 1357-60.
43.Klan, P.; Solomek, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J., Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 2013, 113, 119-91.
44.Villain, M.; Gaertner, H.; Botti, P., Native chemical ligation with aspartic and glutamic acids as C-terminal residues: Scope and limitations. Eur. J. Org. Chem. 2003, 3267-72.
45.de Koning, M. C.; Filippov, D. V.; van der Marel, G. A.; van Boom, J. H.; Overhand, M., Synthesis of peptide-PNA-peptide conjugates by semi-solid-phase chemical ligation combined with deactivation/capture of excess reactants. Eur. J. Org. Chem. 2004, 2004, 850-7.
46.Salunke, S. B.; Babu, N. S.; Chen, C. T., Iron(III) chloride as an efficient catalyst for stereoselective synthesis of glycosyl azides and a cocatalyst with Cu(0) for the subsequent click chemistry. Chem. Commun. 2011, 47, 10440-2.
47.Okano, K.; Mitsuhashi, N.; Tokuyama, H., Total synthesis of PDE-II by copper-mediated double amination. Chem. Commun. 2010, 46, 2641-3.
48.Ulrich, J.; Jaywant, P., A.T. Patent No. 1826199 (A1). 2007.
49.Pehere, A. D.; Abell, A. D., An improved large scale procedure for the preparation of N-Cbz amino acids. Tetrahedron Lett. 2011, 52, 1493-4.
50.Bose, D. S.; Idrees, M.; Todewale, I. K.; Jakka, N. M.; Rao, J. V., Hybrids of privileged structures benzothiazoles and pyrrolo[2,1-c] [1,4] benzodiazepin-5-one, and diversity-oriented synthesis of benzothiazoles. Eur. J. Med. Chem. 2012, 50, 27-38.
51.(a) Chen, C. C.; Rajagopal, B.; Liu, X. Y.; Chen, K. L.; Tyan, Y. C.; Lin, F.; Lin, P. C., A mild removal of Fmoc group using sodium azide. Amino Acids 2014, 46, 367-74; (b) Pozdnev, V. F., Improved methods of obtaining N-trityl-substituted histidine derivatives. Chem. Nat. Compd. 1982, 18, 322-7.
52.Akaji, K.; Fujii, N.; Yajima, H.; Moriga, M.; Aono, M.; Takagi, A., Studies on peptides .102. synthesis of a heptacosapeptide amide corresponding to the entire amino-acid-sequence of gastrin-releasing peptide. Int. J. Pept. Protein Res. 1981, 18, 180-94.
53.McGeary, R. P.; Wright, K.; Toth, I., Conversion of glucosamine to galactosamine and allosamine derivatives: control of inversions of stereochemistry at C-3 and C-4. J. Org. Chem. 2001, 66, 5102-5.
54.Smeenk, L. E.; Dailly, N.; Hiemstra, H.; van Maarseveen, J. H.; Timmerman, P., Synthesis of water-soluble scaffolds for peptide cyclization, labeling, and ligation. Org. Lett. 2012, 14, 1194-7.
55.Allan, W.; Hwei-Ru, T.; Dean, J. B.; Ross, H. P.; Nan, Z., U.S. Patent No. 1000039 (B1). 2004.
56.Lin, C. C.; Hsu, T. S.; Lu, K. C.; Huang, I. T., Synthesis of beta-D-glucopyranosyl(1 -> 3)-1-thiol-beta-glucosamine disaccharide derivative as building block for the synthesis of hyaluronic acid. J. Chin. Chem. Soc. 2000, 47, 921-8.
57.Matsubara, K.; Mukaiyama, T., High-yielding catalytic synthesis of glycosyl azides from peracylated sugars. Chem. Lett. 1994, 247-50.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *