帳號:guest(3.144.30.196)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林芷瑩
作者(外文):Lin, Chih-Ying
論文名稱(中文):探討高胺酸置換對於胜肽結構的影響及研究 Prion 蛋白片段作為醯基轉化催化劑之效益
論文名稱(外文):The effect of (S)-piperidine-2-carboxylic acid on peptide structure and the catalytic activity of Prion protein fragments on acyl transfer reaction
指導教授(中文):洪嘉呈
指導教授(外文):Horng, Jia-Cherng
口試委員(中文):洪嘉呈
莊士卿
朱立岡
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023512
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:89
中文關鍵詞:胜肽高胺酸脯胺酸
相關次數:
  • 推薦推薦:0
  • 點閱點閱:103
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
  (S)-piperidine-2-carboxylic acid (Pip) 為六員環的脯胺酸衍生物,其被認為與罕見疾病哌啶酸血症 (hyperpipecolic acidemia) 相關,該病症的特徵在於會增加高脯胺酸在血液中的濃度,導致神經疾病和肝腫大。本次研究第一部分即探討將 Pip 置換在脯胺酸 (Pro) 位置對於不同結構胜肽穩定度的影響,我們將 Pip 置換在 polyproline、HP7 及 Trp cage 胜肽上,以圓二色光譜儀 (Circular dichroism;CD) 來觀察其 Far-UV 光譜與熱熔化曲線的改變。結果發現 Pip 的置換對於 polyproline II (PPII) 結構較無影響,但會造成 polyproline I (PPI) 結構穩定度下降。在 HP7 胜肽置換 Pip 的實驗中,發現 Pip 不會對於β-harpin 結構產生太大的改變。最後將 Pip 置換在 Trp cage 上四個 Pro 的位置上,得到 Pip 的置換會造成 Trp cage 胜肽結構相當不穩定,判斷是因為 Pip 的六員環立體障礙過大而導致 α-helix 結構的崩解,也對於不同位置所造成的影響有所討論。
  我們也利用理論計算試圖佐證我們在 polyproline 實驗中得到的結果,使用 Gaussian 軟體,以 DFT 方法進行結構最佳化,Ac-P2(Pip)P2-NH2 分子模型進行計算。計算所得到的結果為 Pip 主要的構形 boat up 會類似於 Pro 的 exo 構形。在 PPI 結構中四種構形的 Pip 都與 P5 PPI 有很大的差異,可能就是造成我們在 CD 光譜中 PPI 結構較不穩定的主要原因。
  第二部分我們以 Prion octarepeat 片段來作為醯基轉化催化劑,發現將 Ac-XaaHGGGWGQP-NH2 和 Ac-GQXaaHGGGWGQ-NH2 中的 Xaa 位置置換成 Asp 對於催化醯基轉化有明顯地效果。而 Ac-GQDHGGGWFQ-NH2 (GQD) 的催化效果大於 Ac-DHGGGWGQP-NH2 (DP),判斷是前者 Asp 位置位在胜肽鏈的內側較不易晃動,使得 Asp 和 His 間的距離較為固定,有比較強的作用造成催化效果較佳。
  (S)-piperidine-2-carboxylic acid (Pip) is a six-membered ring of proline derivative. Pip has been reported to be associated with hyperpipecolic acidemia-one of the rare disorders, which an increase in pipecolic acid levels in the blood leads to neuropathy and hepatomegaly. In the fist part of this work, we prepared various peptides with Pip incorporated, including polyproline, HP7, and Trp cage. Circular dichroism spectroscopy (CD) was used to characterize their conformation. We found that the incorporation of Pip did not affect polyproline II structure but destabilized polyproline I conformation. When Pip was incorporated into HP7, it seemed to fit well in a β-harpin and did not significantly change the structure. However, the incorporation of Pip into Trp cage dramatically destabilized the α-helical structure, in particular replacing Pro12 to Pip destroyed the structure.
  We also used a computational approach to study the effect of Pip on polyproline conformation. For each model compound and system, hybrid density functional theory (DFT) calculations, as implemented in Gaussian 09, were carried out to learn the energy difference between different conformations. We used Ac-P2(Pip)P2-NH2 as a model system for the computation. Pip prefers a boat up conformation similar to the Cϒ-exo pucker of Pro, and can also form the conformation of boat down, chair up, and chair down. The calculations indicate that all the conformers of Pip are not appropriate to a PPI helix, which may explain why Pip destabilizes PPI conformation as observed by the experiments.
  In the second part, we chose Prion octarepeat fragments to study their potential catalytic activity on acyl transfer reaction. The results indicate that it has a high catalytic activity when the Xaa position in Ac-XaaHGGGWGQP-NH2 (GQX) or Ac-GQXaaHGGGWGQ-NH2 (XP) is Asp, and Ac-GQDHGGGWGQ-NH2 (GQD) is more efficient than Ac-GQDHGGGWGQ-NH2 (DP). In GQD, the Asp is at the middle of the peptide, making Asp interact with His more strongly, which might explain why GQD is more effective than DP on catalyzing the reaction.
目錄
謝誌 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 蛋白質簡介 1
1.2 聚脯胺酸 (polyproline) 介紹 3
1.3 HP7 介紹 7
1.4 色胺酸包覆胜肽 (Trp cage) 介紹 9
1.5 醯基轉化 (Acyl transfer) 原理 11
1.6 Prion Protein 介紹 12
1.7 固相胜肽合成法 (Solid Phase Peptide Synthesis, SPPS) 簡介 15
1.7.1 將胺基酸接上樹脂 19
1.7.2 去保護 (Deprotection) 20
1.7.3 活化 (Activation) 21
1.7.4 耦合 (Coupling) 22
1.7.5 切除 (Cleavage) 23
1.8 圓二色光譜儀 (Circular dichroism spectroscopy, CD) 介紹 23
1.9 研究動機 30
第二章 實驗部分 31
2.1 實驗儀器 31
2.2 實驗藥品 32
2.3 化合物之合成與鑑定 34
2.3.1 Fmoc-Tyr(t-Bu)-resin 之合成 34
2.3.2 4-Nitrophenyl 2-methoxyacetate 之合成 35
2.5 光譜測量 39
2.5.1 UV 光譜測量濃度 39
2.5.2 CD光譜測量 40
2.5.3 醯基轉化實驗測量 41
2.6 光譜數據分析 42
2.6.1 CD 變溫實驗之數據處理 42
2.6.2 催化實驗之數據處理 43
第三章 計算研究方法及步驟 45
3.1 研究系統及計算方法 45
3.2 研究步驟 46
第四章 實驗結果與討論 48
第一部分 高脯胺酸對於胜肽結構的影響 48
4.1 高脯胺酸的構形 48
4.2 polyproline 胜肽 CD 測量結果討論 52
4.2.1 水溶液中的Far-UV CD 光譜 52
4.2.2 n-propanol 溶液中的Far-UV CD 光譜 53
4.2.3 n-propanol 溶液中的變溫實驗 54
4.3 聚脯胺酸置換高脯胺酸後的結構 57
4.4 高脯胺酸的 n→π* 作用力 63
4.5 HP7-Pip 胜肽 CD 測量結果討論 66
4.5.1 Far-UV CD 光譜 67
4.5.2 Near-UV CD 光譜 68
4.5.3 變溫實驗 69
4.5.4 HP7-Pip CD 光譜結果之探討 70
4.6 Trp-cage-Pip 胜肽 CD 測量結果討論 72
4.6.1 Far-UV CD 光譜 72
4.6.2 變溫實驗 73
4.6.3 Trp cage-Pip CD 光譜結果之探討 74
第二部分 利用Prion octarepeat 片段作為醯基轉化催化劑之探討 77
4.7 比較不同 Prion octarepeat 片段對催化醯基轉化反應的效率 77
第五章 結論 82
第六章 參考文獻 84
第七章 附錄 89
1. S. Durani, Protein design with L- and D-alpha-amino acid structures as the alphabet, Acc. Chem. Res., 2008, 41, 1301-1308.
2. J. Venkatraman, S. C. Shankaramma, and P. Balaram, Design of folded peptides, Chem. Rev., 2001, 101, 3131-3152.
3. S. J. Lippard, and J. M. Berg, Principles of Bioinorganic Chemistry, University Science Books, 1994, 286.
4. J. C. Horng, and R. T. Raines, Stereoelectronic effects on polyproline conformation, Protein Sci., 2006, 15, 74-83.
5. S. Kakinoki, Y. Hirano, and M. Oka, On the stability of polyproline-I and II structures of proline oligopeptides, Polymer Bull., 2005, 53, 109-115.
6. M. Mutter, T. Wöhr, S. Gioria, and M. Keller, Pseudo-prolines: induction of cis/trans-conformational interconversion by decreased transition state barriers, Biopolymers, 1999, 51, 121-128.
7. A. A. Adzhubei, and M. J. E. Sternberg, Left-handed polyproline II helices commonly occur in globular proteins, J. Mol. Biol., 1993, 229, 472-493.
8. G. Siligardi, and A. F. Drake, The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides, Biopolymers, 1995, 37, 281-292.
9. S.-i. Sato, Y. Kwon, S. Kamisuk, N. Srivastava, Q. Mao, Y. Kawazoe, and M. Uesugi, Polyproline-rod approach to isolating protein targets of bioactive small molecules: isolation of a new target of indomethacin, J. Am. Chem. Soc., 2007, 129, 873-880.
10. A. Bhattacharyya, A. K. Thakur, V. M. Chellgren, G. Thiagarajan, A. D. Williams, B. W. Chellgren, T. P. Creamer, and R. Wetzel, Oligoproline effects on polyglutamine conformation and aggregation, J. Mol. Biol., 2006, 355, 524-535.
11. A. Rich, and F. H. C. Crick, The molecular structure of collagen, J. Mol. Biol., 1961, 3, 483-506.
12. M. P, Hinderaker, and R. T. Raines, An electronic effect on protein structure, Protein Sci., 2003, 12, 1188-1194.
13. J. A. Hodges, and R. T. Raines, Energetics of an n→π* Interaction that impacts protein structure, Org. Lett., 2006, 8, 4695-4697.
14. C. E. Jakobsche, A. Choudhary, S. J. Miller, and R. T. Raines, n to π* interaction and n)(π Pauli repulsion are antagonistic for protein stability, J. Am. Chem. Soc., 2010, 132, 6651-6653.
15. Y.-C. Chiang, Y.-J. Lin, and J.-C. Horng, Stereoelectronic effects on the transition barrier of polyproline conformational interconversion, Protein Sci., 2009, 18, 1967-1977.
16. Y.-J. Lin, C.-H. Chang, and J.-C. Horng, The impact of 4‑thiaproline on polyproline conformation, J. Phys. Chem. B, 2014, 118, 10813-10820.
17. N. Kobayashi, S. Honda, H. Yoshii, H. Uedaira, and E. Munekata, Complement assembly of two fragments of the streptococcal protein G B1 domain in aqueous solution, FEBS Letters, 1995, 366, 99-103.
18. A. Skwierawska, S. Ołdziej, A. Liwo, and H. A. Scheraga, Conformational studies of the C-terminal 16-amino-acid-residue fragment of the B3 domain of the immunoglobulin binding protein G from Streptococcus, Biopolymers, 2009, 91, 37-51.
19. A. Skwierawska, W. Żmudzińska, S. Ołdziej, A. Liwo, and H. A. Scheraga, Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. II. Interplay of local backbone conformational dynamics and long-range hydrophobic interactions in hairpin formation, Proteins, 2009, 76, 637-654.
20. A. M. Gronenborn, D. R. Filpula, N. Z. Essig, A. Achari, M. Whitlow, P. T. Wingfield, and G. M. Clore, A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G, Science, 1991, 253, 657-661.
21. P. Alexander, S. Fahnestock, T. Lee, J. Orban, and P. Bryan, Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures, Biochemistry, 1992, 31, 3597-3603.
22. P. Alexander, J. Orban, and P. Bryan, Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptococcal protein G, Biochemistry, 1992, 31, 7243-7248.
23. S. Honda, N. Kobayashi, and E. Munekata, Thermodynamics of a β-hairpin structure: evidence for cooperative formation of folding nucleus, J. Mol. Biol., 2000, 295, 269-278.
24. N. Kobayashi, S. Honda, and E. Munekata, Conformational study on the IgG binding domain of protein G, Peptide Chem., 1993, 278-280.
25. F. J. Blanco, G. Rivas, and L. Serrano, A short linear peptide that folds into a native stable [beta]-hairpin in aqueous solution, Nat. Struct. Mol. Biol., 1994, 1, 584-590.
26. S. Honda, N. Kobayashi, E. Munekata, and H. Uedaira, Fragment reconstitution of a small protein:  folding energetics of the reconstituted immunoglobulin binding domain B1 of streptococcal protein G, Biochemistry, 1999, 38, 1203-1213.
27. N. Kobayashi, S. Honda, and E. Munekata, Fragment reconstitution of a small protein:  disulfide mutant of a short C-terminal fragment derived from streptococcal protein G, Biochemistry, 1999, 38, 3228-3234.
28. V. Muñoz, E. R. Henry, J. Hofrichter, and W. A. Eaton, A statistical mechanical model for β-hairpin kinetics, Proc. Natl. Acad. Sci. USA, 1998, 95, 5872-5879.
29. A. R. Dinner, T. Lazaridis, and M. Karplus, Understanding β-hairpin formation, Proc. Natl. Acad. Sci. USA, 1999, 96, 9068-9073.
30. N. Kobayashi, S. Honda, H. Yoshii, and E. Munekata, Role of side-chains in the cooperative β-hairpin folding of the short C−terminal fragment derived from streptococcal protein G, Biochemistry, 2000, 39, 6564-6571.
31. R. M. Fesinmeyer, F. M. Hudson, and N. H. Andersen, Enhanced hairpin stability through loop design:  The case of the protein G B1 domain hairpin, J. Am. Chem. Soc., 2004, 126, 7238-7243.
32. N. H. Andersen, K. A. Olsen, R. M. Fesinmeyer, X. Tan, F. M. Hudson, L. A. Eidenschink, and S. R. Farazi, Minimization and optimization of designed β-hairpin folds, J. Am. Chem. Soc., 2006, 128, 6101-6110.
33. M. S. Searle, S. R. Griffiths-Jones, and H. Skinner-Smith, Energetics of weak interactions in a β-hairpin peptide:  electrostatic and hydrophobic contributions to stability from lysine salt bridges, J. Am. Chem. Soc., 1999, 121, 11615-11620.
34. B. M. P. Huyghues-Despointes, X. Qu, J. Tsai, and J. M. Scholtz, Terminal ion pairs stabilize the second beta-hairpin of the B1 domain of protein G, CORD Conference Proceedings, 2006, 63, 1005-1017.
35. 姜怡君, 碩士論文, 2009, 國立清華大學化學系.
36. P. J. Kraulis, Molscript: A program to produce both detailed and schematic plots of protein structures, J. Appl. Cryst., 1991, 24, 946-950.
37. B. I. Dahiyat, and S. L. Mayo, De novo protein design: fully automated sequence selection, Science, 1997, 278, 82-87
38. M. Jäger, H. Nguyen, J. C. Crane, J. W. Kelly, and M. Gruebele, The folding mechanism of a beta-sheet: the WW domain, J. Mol. Biol., 2001, 311, 373-393.
39. L. Qiu, S. A. Pabit, A. E. Roitberg, and S. J. Hagen, Smaller and faster: the 20-residue Trp-cage protein folds in 4 micros, J. Am. Chem. Soc., 2002, 124, 12952-12953.
40. J. W. Neidigh, R. M. Fesinmeyer, and N. H. Andersen, Designing a 20-residue protein, Nat. Struct. Mol. Biol., 2002, 9, 425-430.
41. D. Naduthambi, and N. J. Zondlo, Stereoelectronic tuning of the structure and stability of the Trp cage miniprotein, J. Am. Chem. Soc., 2006, 12430-12431.
42. T. C. Bruice, and G. L. Schmir, Imidazole catalysis. I. the catalysis of the hydrolysis of phenyl acetates by imidazole, J. Am. Chem. Soc., 1957, 79, 1663-1667.
43. N. K. Pandit, and K. A. Connors, Kinetics and mechanism of hydroxy group acetylations catalyzed by N-methylimidazole, J. Pharm. Sci, 1982, 71, 485-491.
44. M. Matsumoto, S. J. Lee, M. L. Waters, and M. R. Gagné, A catalyst selection protocol that identifies biomimetic motifs from β-hairpin libraries, J. Am. Chem. Soc., 2014, 15817-15820.
45. S. Bezer, M. Matsumoto, M. W. Lodewyk, S. J. Lee, D. J. Tantillo, M. R. Gagné, and M. L. Waters, Identification and optimization of short helical peptides with novel reactive functionality as catalysts for acyl transfer by reactive tagging, Org. Biomol. Chem, 2014, 1488–1494.
46. M. Matsumoto, S. J. Lee, M. R. Gagné, and M. L. Waters, Cross-strand histidine–aromatic interactions enhance acyl-transfer rates in beta-hairpin peptide catalysts, Org. Biomol. Chem., 2014, 8711–8718.
47. Q. N. N. Nguyen, M. W. Lodewyk, S. Bezer, M. R. Gagné, M. L. Waters, and D. J. Tantillo, Effects of helix macrodipole and local interactions on catalysis of acyl transfer by α-Helical peptides, ACS Catal., 2015, 1617-1622.
48. S. B. Prusiner, Novel proteinaceous infectious particles cause scrapie, Science, 1982, 216.
49. S. B. Prusiner, Prions, Proc. Natl. Acad. Sci. USA, 1998, 95, 13363-13383.
50. J. Collinge, Prion diseases of humans and animals: their causes and molecular basis, Annu. Rev. Neurosci., 2001, 24, 519-550.
51. J. M. Gabriel, B. Oesch, H. Kretzschmar, M. Scott, and S. B. Prusiner, Molecular cloning of a candidate chicken prion protein, Proc. Natl. Acad. Sci. USA, 1992, 89, 9097-9101.
52. F. Wopfner, G. Weidenhöfer, R. Schneider, A. v. Brunn, S. Gilch, T. F. Schwarz, T. Werner, and H. M. Schätzl, Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein, J. Mol. Biol., 1999, 289, 1163-1178.
53. L. Calzolai, D. A. Lysek, D. R. Pérez, P. Güntert, and K. Wüthrich, Prion protein NMR structures of chickens, turtles, and frogs, Proc. Natl. Acad. Sci. USA, 2005, 102, 651-655.
54. C. S. Burns, E. Aronoff-Spencer, C. M. Dunham, P. Lario, N. I. Avdievich, W. E. Antholine, M. M. Olmstead, A. Vrielink, G. J. Gerfen, J. Peisach, W. G. Scott, and G. L. Millhauser, Molecular features of the copper binding sites in the octarepeat domain of the prion protein, Biochemistry, 2002, 41, 3991-4001.
55. R. B. Merrifield, Solid phase synthesis, Science, 1986, 232, 341-347.
56. M. Erdélyi, and A. Gogoll, Rapid microwave-assisted solid phase peptide synthesis, Synthesis, 2002, 11, 1592-1596.
57. S. L. Pedersen, A. P. Tofteng, L. Malika, and K. J. Jensen, Microwave heating in solid-phase peptide synthesis, Chem. Soc. Rev., 2012, 41, 1826-1844.
58. C. Loffredo, N. A. Assunção, J. Gerhardt, and M. T. M. Miranda, Microwave-assisted solid-phase peptide synthesis at 60 degrees C: alternative conditions with low enantiomerization, J. Pept. Sci., 2009, 15, 808-817.
59. N. Berova, K. Nakanishi, and R. W. Woody, Circular dichroism: principles and applications, Wiley-VCH, 2000.
60. R. C. Knowlton, and L. D. Byers, Acyl-substituent effects on ester aminolysis, J. Org. Chem., 1988, 53, 3862-3865.
61. H. Zhong, and H. A. Carlson, Conformational studies of polyprolines, J. Chem. Theory Comput., 2006, 2, 342-353.
62. M. L. DeRider, S. J. Wilkens, M. J. Waddell, L. E. Bretscher, F. Weinhold, R. T. Raines, and J. L. Markley, Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations, J. Am. Chem. Soc., 2002, 124, 2497-2505.
63. 張巧欣, 碩士論文, 2013, 國立清華大學化學系.
64. C. C. Mello, and D. Barrick, Measuring the stability of partly folded proteins using TMAO, Protein Sci., 2009, 12, 1522-1529.
65. B. Barua, J. C. Lin, V. D. Williams, P. Kummler, J. W. Neidigh, and N. H. Andersen, The Trp-cage: optimizing the stability of a globular miniprotein, PEDS., 2008, 21, 175-185.
66. M. L. Bender, R. J. Bergeron, and M. Komiyama, The bioorganic chemistry of enzymatic catalysis, Wiley-interscience, 1984, 130, 45.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *