帳號:guest(18.116.8.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):柯韋宏
作者(外文):Ke, Wei-Hong
論文名稱(中文):水溶液下合成具有可調控粒徑大小的小顆氧化亞銅奈米粒子以及晶面光學性質探討
論文名稱(外文):Synthesis of small Cu2O nanocubes and octahedra in aqueous solution with tunable sizes and their facet-dependent optical properties
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):黃瑄益
吳文偉
郭俊宏
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:102023505
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:51
中文關鍵詞:氧化亞銅奈米形狀控制尺寸控制半導體化學光譜
相關次數:
  • 推薦推薦:0
  • 點閱點閱:144
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文利用兩種無添加界面活性劑的方法在10分鐘內合成出可大範圍調控粒徑的小顆八面體及正立方體氧化亞銅。其方法為在水相系統中混合硝酸銅(Cu(NO3)2)、聯胺(N2H4)、和不同體積的氫氧化鈉(NaOH)溶液,可得到頭對頭距離為52奈米變化至157奈米的八面體氧化亞銅。而正立方體氧化亞銅邊緣長度由9奈米變化至87奈米則可藉由水相於35 ºC下混合硫酸銅(CuSO4),和不同體積的氫氧化鈉 (NaOH),以及抗壞血酸(ascorbic acid)合成。這些粒徑大小皆可以被系統性的控制,這也表示超小氧化亞銅奈米粒子的形狀大小與控制在此獲得了突破。過去曾在金-氧化亞銅核殼雙層結構(Au‒Cu2O core‒shell nanocrystals)及鈀-氧化亞銅核殼雙層結構(Pd‒Cu2O core‒shell nanocrystals)的光譜中,觀察到具{100}晶面的正立方體有比具{111}晶面的八面體更紅位移的現象,本研究藉由比較一系列體積接近正立方體及八面體氧化亞銅的UV吸收光譜,發現正立方體相對於八面體的吸收峰可保持約15奈米的紅位移,故可證明氧化亞銅奈米粒子在光學上的晶面效應。
Here we report two surfactant-free methods for synthesis of small Cu2O octahedra and nanocubes with a large range of size tenability in just 10 min. Cu2O octahedra with corner-to-opposite corner distance varying from 52 nm to 157 nm have been obtained by simply mixing aqueous Cu(NO3)2 solution, N2H4 solution, and different volumes of NaOH solution. Cu2O nanocubes with edge lengths from 9 nm to 87 nm can be synthesized by mixing aqueous CuSO4 solution, different volumes of NaOH solution, and ascorbic acid solution at 35 ºC. The particle size can be controlled systematically. This represents the highest level of size and shape control for ultrasmall Cu2O nanocrystals which have been difficult to make. By comparing cubes and octahedra with similar sizes in terms of particle volume for their optical absorption spectra, nanocubes are consistently more red-shifted than octahedra by approximately 15 nm, proving convincingly that Cu2O nanocrystals possess facet-dependent properties, and that cubes bound by the {100} facets have a more red-shifted absorption band similar to observations made in Au‒Cu2O and Pd‒Cu2O nanocrystals.
論文摘要.....I
ABSTRACT OF THE DISSERTATION.....II
ACKNOWLEDGEMENTS.....III
TABLE OF CONTENTS.....V
LIST OF TABLES.....VII
LIST OF FIGURES.....VIII
LIST OF SCHEMES.....XI
LIST OF PUBLICATIONS.....XI

Synthesis of small Cu2O nanocubes and octahedra in aqueous solution with tunable sizes and their facet-dependent optical properties

1.Introduction.....1
1.1 Synthesis of Cu2O nanocubes with tunable sizes.....3
1.2 Synthesis of Cu2O octahedra with tunable sizes.....9
1.3 Synthesis of Cu2O nanocrystals with morphological evolution.....11
1.4 Facet-specific properties of Cu2O nanocrystals.....17
2.Experimental Section.....26
2.1 Chemicals.....26
2.2 Synthesis of Cu2O nanocrystal with morphological evolution and octahedra with tunable size.....27
2.3 Synthesis of Cu2O nanocubes with tunable size.....28
2.4 Consideration of particle volumes.....30
2.5 Instrumentation.....31
3.Results and discussion.....32
4.Conclusion.....47
5.References.....48


(1)Huang, M. H.; Rej, S.; Hsu, S.-C. Chem. Commun. 2014, 50, 1634−1644.
(2)Chiu, C.-Y.; Huang, M. H. J. Mater. Chem. A 2013, 1, 8081−8092.
(3)Sun, S.; Yang, Z. RSC Adv. 2014, 4, 3804−3822.
(4)Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261−1267.
(5)Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159−14164.
(6)Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355−18360.
(7)Kwon, Y.; Soon, A.; Han, H.; Lee, H. J. Mater. Chem. A 2015, 3, 156−162.
(8)Tang, L.; Lv, J.; Sun, S.; Zhang, X.; Kong, C.; Songa, X.; Yang, Z.; New J. Chem. 2014, 38, 4656−4660.
(9)Zhang, H,; Liu, F.; Li, B.; Xu, J.; Zhao, X.; Liu, X. RSC Adv. 2014, 4, 38059–38063.
(10)Wang, X.; Wu, H.-F.; Kuang, Q.; Huang, R.-B.; Xie, Z.-X.; Zheng, L.-S. Langmuir 2010, 26, 2774−2778.
(11)Lyu, L.-M.; Wang, W.-C.; Huang, M. H. Chem.‒Eur. J. 2010, 16, 14167−14174.
(12)Wang, G.; Ma, X.; Huang, B.; Cheng, H.; Wang, Z.; Zhan, J.; Qin, X.; Zhang, X.; Dai, Y. J. Mater. Chem. 2012, 22, 21189−21194.
(13)Wang, H.; Yang, J.; Li, X.; Zhang, H.; Li, J.; Guo, L. Small 2012, 8, 2802–2806.
(14)Chen, H.-S.; Wu, S.-C.; Huang, M. H. Dalton Trans. 2015, DOI: 10.1039/C4DT03345K.
(15)Li, C.; Bai, T.; Li, F.; Wang, L.; Wu, X.; Yuan, L.; Shi, Z.; Feng, S. CrystEngComm 2013, 15, 597−603.
(16)Wang, W.-C.; Lyu, L.-M.; Huang, M. H. Chem. Mater. 2011, 23, 2677−2684.
(17)Chanda, K.; Rej, S.; Huang, M. H. Chem.‒Eur. J. 2013, 19, 16036−16043.
(18)Li, L.; Nan, C.; Peng, Q.; Li, Y. Chem.‒Eur. J. 2012, 18, 10491−10496.
(19)Chanda, K.; Rej, S.; Huang, M. H. Nanoscale 2013, 5, 12494−12501.
(20)Tsai, Y.-H.; Chanda, K.; Chu, Y.-T.; Chiu, C.-Y.; Huang, M. H. Nanoscale 2014, 6, 8704−8709.
(21)Wang, L.; Ge, J.; Wang, A.; Deng, M.; Wang, X.; Bai, S.; Li, R.; Jiang, J.; Zhang, Q.; Luo, Y.; Xiong, Y. Angew. Chem., Int. Ed. 2014, 53, 5107−5111.
(22)Hua, Q.; Cao, T.; Bao, H.; Jiang, Z.; Huang, W. ChemSusChem 2013, 6, 1966−1972.
(23)Tsai, Y.-H.; Chiu, C.-Y.; Huang, M. H. J. Phys. Chem. C 2013, 117, 24611−24617.
(24)Kuo, C.-H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815–12820.
(25)Sui, Y.; Fu, W.; Zeng, Y.; Yang, H.; Zhang, Y.; Chen, H.; Li, Y.; Li, M.; Zou, G. Angew. Chem., Int. Ed. 2010, 49, 4282−4285.
(26)Kuo, C.-H.; Yang, Y.-C.; Gwo, S; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052–1057.
(27)Tan, C.-S. Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155−2160.
(28)Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwoa, S.; Huang, M. H. Nanoscale 2014, 6, 4316‒4324.
(29)Rej, S.; Wang, H.-J.; Huang, M.-X.; Hsu, S.-C.; Tan, C.-S.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Nanoscale, DOI: 10.1039/C5NR01411E.
(30)Hsu, S.-C.; Liu, S.-Y.; Wang, H.-J.; Huang, M. H. Small 2015, 11, 195−201.
(31)Huang, M. H.; Rej, S.; Chiu, C.-Y. Small 2015, 11, 2716−2726.
(32)Gou, L.; Murphy, C. J. J. Mater. Chem. 2004, 14, 735−738.
(33)Kuo, C.-H.; Chen, C.-H.; Huang, M. H. Adv. Funct. Mater. 2007, 17, 3773−3780.
(34)Chang, I.-C.; Chen, P.-C.; Tsai, M.-C.; Chen, T.-T.; Yang, M.-H.; Chiu, H.-T.; Lee, C.-Y. CrystEngComm 2013, 15, 2363−2366.
(35)He, P.; Shen, X.; Gao, H. J. Colloid Interface Sci. 2005, 284, 510−515.
(36)Xu, H.; Wang, W.; Zhu, W. J. Phys. Chem. B 2006, 110, 13829−13834.
(37)Sun, S.; Song, X.; Sun, Y.; Deng, D.; Yang, Z. Catal. Sci. Technol. 2012, 2, 925−930.
(38)Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Chem. Mater. 2008, 20, 7570−7574.
(39)Cao, Y.; Xu, Y.; Hao, H.; Zhang, G. Mater. Lett. 2014, 114, 88–91.
(40)Chen, K.; Xue, D. CrystEngComm 2012, 14, 8068–8075.
(41)Paolella, A.; Brescia, R.; Prato, M.; Povia, M.; Marras, S.; Trizio, L. D.; Falqui, A.; Manna, L.; George, C. ACS Appl. Mater. Interfaces 2013, 5, 2745−2751.
(42)Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. J. Am. Chem. Soc. 2010, 132, 6131–6144.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具形態控制的氧化亞銅奈米晶體及氧化亞銅包金之核殼異質結構之合成及其物理與化學性質的探討
2. 藉由化學性蝕刻形成具截邊立方體和截角菱形十二面體結構的氧化亞銅奈米骨架;超小顆氧化亞銅立方體和八面體以及八足體的合成及其光催化活性的探討
3. 一、立方體型態演繹至六足體之氧化銀奈米晶體的合成及其表面特性 二、研究多截面金奈米晶粒核的形狀以及表面晶面對於形成氧化亞銅包金核殼異質結構的影響
4. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
5. 氧化鋅與氧化鎘奈米線的合成
6. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
7. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
8. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
9. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
10. 水溶液加熱還原法合成二維金奈米晶體
11. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
12. 一、奈米金結構之合成、官能基化與組裝 二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
13. Growth of ZnO and CdO Nanowires by Vapor Transport. Synthesis of Core-Shell Ga-GaN Nanostructures and GaN Hollow Spheres via Reflux Method
14. 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
15. 利用中孔洞氧化矽材料形成氮化銦及氧化銦奈米棒的製備與光譜分析
 
* *