帳號:guest(3.137.177.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張宏瑋
作者(外文):Chang, Hung-Wei
論文名稱(中文):薄矽晶片在長波長紅外光的平均放射率之測量
論文名稱(外文):Measurement of the average emissivity of thin silicon wafers in long wavelength Infrared
指導教授(中文):林登松
指導教授(外文):Lin, Deng-Sung
口試委員(中文):楊耀文
施宙聰
王立邦
口試委員(外文):Yang, Yaw-Wen
Shy, Jow-Tsong
Wang, Li-Bang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:102022546
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:62
中文關鍵詞:矽晶片放射率紅外線熱像儀
外文關鍵詞:Silicon waferEmissivityThermal camera
相關次數:
  • 推薦推薦:0
  • 點閱點閱:350
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
以紅外線熱像儀量測溫度時,實用上放射率(ε)是唯一可調整的參數,ε是一般光學特性吸收率(α’)、穿透率(Tr*)、反射率(R*) 之函數。從Kirchhoff’s law of Radiation中可以知道在熱平衡時ε等於α’,而α’、Tr*、R*之和為1,對於矽晶片樣品而言,R*、α’在長波長紅外光基本上與和樣品厚度(d)無關,而Tr*則和樣品厚度相關,在以往的文獻中,只關注在參雜濃度對於放射率的影響,而近年來發現的超薄材料如石墨烯以及矽烯,可以用來製作超快電晶體,而在電晶體製作上經常使用到熱製程,如果能夠了解厚度與放射率間的關係,在量測超薄樣品時會有很大的幫助。
傳統量測放射率的方法,是將樣品與近似黑體放入定溫爐內,同時比較兩者的光強度藉此得到放射率,但是在量測薄樣品時會有背景輻射影響的疑慮,因此我們提出一個新的研究方法量測放射率,利用光電子能譜學(XPS)探測氣體是否從矽晶片表面上脫附,並且結合熱電偶(Thermocouple)以及紅外線熱像儀(IR camera)來研究長波長紅外光波段(8-13μm)中,超薄矽晶片的平均放射率,而此方法可以去除背景熱輻射的影響。
藉由實驗以及理論計算結果,可以將放射率與厚度的關係整理成線性區、過渡區、常數區,分別有不同的適用條件。實驗結果顯示在矽晶片溫度為732 K時,厚度20μm的矽晶片平均放射率為0.08±0.02,而厚度550μm的矽晶片平均放射率為0.68±0.02,但是當矽晶片的溫度為1067 K時,厚度20μm的矽晶片平均放射率為0.61±0.01,而厚度550μm的矽晶片平均放射率為0.68±0.01。
The long wavelength infrared (LWIR) refers to the wave length ranging from 8-13 m. This wavelength range is often used in thermopile-based infrared pyrometers, which are commonly used to non-contact temperature measurement of Si wafers. Emissivity is, in practical, the only adjustable parameter for infrared pyrometers. From Kirchhoff’s law of radiation, at thermal equilibrium, emissivity is equal to absorptivity; the sum of absorptivity, reflectivity and transmissivity is one. The reflectivity of silicon in LWIR is independent of wafer thickness (d), while transmissivity does depend on d and absorption coefficient. In the literature, much has been studied on the effect of doping concentration to emissivity. Less has been known about the relation between thickness and emissivity. Recently, ultrathin material like silicene and graphene have been discovered and triggered many possible applications. The measurement and control of temperature of these ultrathin materials are important for their processing in device fabrication. If the emissivity of thin films can be precisely determined, then we can measure the temperature of silicene and graphene by pyrometers.
The traditional method to calibrate emissivity is to put a sample and a nearly-perfect blackbody in a temperature-controlled furnace for comparative measurement of their radiance. However, the thermal radiation from the background furnace cannot be fully eliminated for thin samples in this method. In this study, we have proposed a new approach to obtain the average emissivity of ultrathin silicon wafer in LWIR by employing a combination of techniques XPS, thermocouples and pyrometers. In our method, the effect of background thermal radiation can be ignored.
The experiment results show that the emissivity of silicon wafers decreases with their thickness, in agreement with theoretical predictions. At 732 K, the average emissivity is 0.08±0.02 for Si wafers of 20 μm in thickness; 0.68±0.02 for 550 μm. However, at temperatures higher than ~1067 K, the emissivity changes little for wafers with thickness >~20 um. The measured average emissivity for 20-μm-thick wafers is 0.61±0.01 and 0.68±0.01 for 550 μm.
摘要 I
致謝 IV
目錄 V
第一章 簡介 1
1.1 研究動機 1
1.2 Si(100)晶面 2
1.3 相關文獻 4
1.3.1 矽的放射率 4
1.3.2 矽在遠紅外線波段的吸收係數 8
1.3.3 氫原子吸附在Si(100)-2x1表面 10
1.3.4 H/Si(100)-2x1以及H/Si(100)-1x1的脫附反應 12
1.3.5 氧分子吸附在Si(100)-2x1表面 15
第二章 實驗儀器與原理 18
2.1 X射線光電子能譜學 18
2.1.1 基本原理 18
2.1.2 超高真空光電子能譜學系統 20
2.2 超高真空系統 21
2.3 遠紅外線熱像儀 23
2.3.1 儀器簡介 23
2.3.2 放射率與溫度轉換經驗公式 26
2.4 熱電偶 30
2.4.1 基本原理 30
2.4.2 實驗系統 31
2.5 樣品製備 34
2.5.1 氘原子吸附在Si(100) 34
2.5.2 氧分子吸附在Si(100) 35
第三章 實驗結果與分析 36
3.1 氘原子在Si(100)上的脫附現象 36
3.2 氧分子在Si(100)上的脫附現象 43
3.3 Si(100)放射率理論計算 47
3.4 實驗結果及理論計算比較與分析 54
第四章 結論 58
相關文獻 61

[1] P. Gupta, V. L. Colvin, and S. M. George. "Hydrogen Desorption Kinetics from Monohydride and Dihydride Species on Silicon Surfaces." Phys. Rev. B 37, 8234 (1988).
[2] Deng-Sung Lin, and Ru-Ping Chen. "Hydrogen-Desorption Kinetic Measurement on the Si(100)-2x1:H Surface by Directly Counting Desorption Sites." Phys. Rev. B 60, R8461 (1999).
[3] U. Hofer , Leping Li, and T. F. Heinz. "Desorption of Hydrogen from Si(100)2x1 at Low Coverages:The Influence of π-Bonded Dimers on the Kinetics." Phys. Rev. B 45, 9485 (1992).
[4] H.W. Yeom. "High-Resolution Core-Level Study of Initial Oxygen Adsorption on Si(001) : Surface Stoichiometry and Anomalous Si 2p Core-Level Shifts." Phys. Rev. B 59, 10413 (1999).
[5] D. R. Hamann. "Energetics of Silicon Suboxides." Phys. Rev. B 61, 9899 (2000).
[6] J.H. Oh , K. Nakamura. "Initial Oxidation Features of Si(100) Studied by Si2p Core-Level Photoemission Spectroscopy." Journal of Electron Spectroscopy and Related Phenomena 114-116, 395 (2001).
[7] DIETER K. SCHRODER, R. NOEL THOMAS, AND JOHN C. SWARTZ. "Free Carrier Absorption in Silicon." Journal of Solid-state Circuits 13, no. 1 (1978).
[8] I. W. Boyd, T. D. Binnie, J. I. B. Wilson, and M. J. Colles. "Absorption of Infrared Radiation in Silicon." J. Appl. Phys. 55, 3061 (1983).
[9] M. Blomberg, K. Naukkarinen, T. Tuomi, and V.-M. Airaksinen. "Substrate Heating Effects in CO2 Laser Annealing of Ion-Implanted Silicon." J. Appl. Phys. 54, 2327 (1983).
[10] Tsutomu SATO. "Spectral Emissivity of Silicon." Japanese Journal of Applied Physics 6, 339 (1967).
[11] BHUSHAN SOPORI, WEI CHEN, and JAMAL MADJDPOUR,. "Calculation of Emissivity of Si Wafers." Journal of ELECTRONIC MATERIALS 28, 1385 (1999).
[12] H. H. Li. "Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives." J. Phys. Chem. Ref. Data 9, 561 (1980).
[13] N. M. Ravindra, B. S., and O. H. Gokce. "Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview." International Journal of Thermophysics 22, 1593 (2001).

[14] A. Hemeryck, A. J. M., and N. Richard. "Difficulty for oxygen to incorporate into the silicon network during initial O2 oxidation of Si(100)-(2×1)." J. Chem. Phys. 126, 114707 (2007).
[15] Y. Enta, H. N., and S. Sato. "Silicon thermal oxidation and its thermal desorption investigated by Si 2p core-level photoemission" Journal of Physics: Conference Series 235, 012008(2010).
[16] H. O. McMAHON. "Thermal Radiation from Partially Transparent Reflecting Bodies." Journal of the Optical Society of America 40, 376-378 (1950).
[17] M. Freitag, and H. Y. Chiu. "Thermal infrared emission from biased graphene." Nature Nanotechnology 5, 497-501 (2010).
[18] Friedhelm Bechstedt, Lars Matthes, and Paola Gori. "Infrared absorbance of silicene and germanene." Applied Physics Letter 100, 261906 (2012).
[19] Yee Kan Koh, Myung-Ho Bae, and David G. Cahill. "Reliably Counting Atomic Planes of Few-Layer Graphene (n>4)." Nano 5, 269-274 (2011).
[20] Li Tao, Eugenio Cinquanta, Daniele Chiappe, and Carlo Grazianetti "Silicene field-effect transistors operating at room temperature." Nature Nanotechnology 10, 227-231 (2015).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *