帳號:guest(3.147.68.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇凱君
作者(外文):Su, Kai Jun
論文名稱(中文):利用極化有機分子調控有機與金屬介面間的介面偶極矩
論文名稱(外文):manipulation of interfacial dipole by using polar organic molecular
指導教授(中文):唐述中
指導教授(外文):Tang, Shu Jung
口試委員(中文):鄭澄懋
蘇雲良
口試委員(外文):Cheng, Cheng Maw
Soo, Yun Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:102022542
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:58
中文關鍵詞:有機分子光電子能譜
外文關鍵詞:ClAlPcorganicARPES
相關次數:
  • 推薦推薦:0
  • 點閱點閱:355
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文呈現出我們能藉由不同的成長方式(自然成長和退火處理)來調控具有極性的氯鋁化酞菁分子排列方式,我們發現到自然成長的樣本可以藉由調整蒸鍍的速率,來改變其吸附在金屬薄膜上的排列方式,若是以快速蒸鍍,將呈現氯有上有下的方式生長,而以很慢的速率蒸鍍,大部分的氯原子將呈現氯向下的生長方式。
搭配上理論的計算,我們可以證明退火處理過的樣品1 ML其主要是以氯在上的方式吸附於薄膜上,銀薄膜的電子沒有受到氯原子的吸引,故我們發現到銀薄膜基底電荷轉移主要是轉移給離氯原子較遠的外圍苯環軌域區,而1 ML自然成長的樣品只要蒸鍍的速率夠慢,氯原子是以氯在下的方式生長,銀薄膜的電子會受到氯原子的吸引,故我們發現到銀薄膜的電子轉移主要是轉移給離氯原子較近的中心Ligand軌域區,而此兩種生長方式所造成的HOMO軌域能量位置有大約0.3 eV的能量差值,所以我們可以藉由調控不同氯的指向,藉以達到操控有機與金屬介面間的偶極。
In this thesis, we reveal that we can use two different adsorption ways (annealed and as-grown) to manipulate the interfacial dipole. In our experiment, we use polar organic molecular ClAlPc with a Cl atom protruding out of the center. This high- electron-affinity atom attracts electrons from the silver thin film below and cause a strong interfacial dipole. With theoretical simulation, we can proof 1 ML ClAlPc thin film annealed after adsorptions are mostly in Cl-up configuration; electrons from the silver thin film are less likely attracted by Cl atom so the charge transfer from the silver thin film mainly occurs at orbitals of benzene rings far from the Cl atom, but in the case of 1 ML ClAlPc thin film grown via as-grown method, if the deposition rate is slow, then ClAlPc molecules are mostly in Cl-down configuration; electrons from the silver thin film are attracted by Cl atom so charge transfer from the silver thin film mainly occurs at the molecular orbitals of ligand structure closer to the Cl atom.
目錄
摘要
英文摘要
1.緒論-----------------------------------------------8
2.基礎原理
2.1有機材料--------------------------------------9
2.2.1 有機分子電子結構-----------------------------9
2.2.2 介面偶極矩----------------------------------10
2.1.3有機材料---------------------------------14
3.實驗室儀器與原理----------------------------------16
3.1超高真空---------------------------------------16
3.2離子濺鍍槍--------------------------------------18
3.3 蒸鍍槍 ---------------------------------------19
3.4測厚儀 ----------------------------------------19
3.5光電子能譜--------------------------------------20
3.5.1 簡介---------------------------------------20
3.5.2光電效應理論模型-------------------------------21
3.5.3 角解析光電子能譜------------------------------24
3.6電子能量分析儀-----------------------------------28
3.6.1 接收模式-------------------------------------30
3.6.2 解析度---------------------------------------30
3.7同步輻射光源-------------------------------------31
4.樣品製備與分析方法---------------------------------34
4.1樣品製備-----------------------------------------34
4.1.1 清潔鍺(111)表面-------------------------------34
4.1.2 成長銀薄膜------------------------------------35
4.1.3 成長有機薄膜----------------------------------39
4.2功函數的測量與分析--------------------------------40
5.實驗結果與討論-------------------------------------38
5.1 真空能階變化-------------------------------------43
5.1.1 12層銀薄膜------------------------------------43
5.1.2 不同層數的銀薄膜--------------------------------45
5.2不同厚度銀薄膜真空能階變化比較-----------------------46
5.2.1有機分子厚度對真空能階變化的影響--------------------46
5.3不同厚度銀薄膜樣品垂直激發能量分佈曲線比較--------------48
5.4理論模擬------------------------------------------51
5.5影響氯原子生長方向的原因-----------------------------53
5.6不同的生長方式對HOMO能量位置的影響-------------------55
6.結論----------------------------------------------56
7.參考資料-------------------------------------------57

參考文獻
[1] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999)
[2] Ching-Hung Chen, Study of the Interfacial Structure between CuPc thin
films and the uniform Ag thin films by Angle-resolved Photoemission
Spectroscopy, Master thesis, National Tsing Hua University (2011)
[3] Ying-Chieh Chuang ,Comparison between As-grown and Annealing Methods on the Structures of Polar-Phthalocyanine grown on the Uniform Silver Thin Films Master thesis, National Tsing Hua University (2014)
[4] S. Hüfner, Photoelectron Spectroscopy: Principle and Application, 3rd
edition,Springer
[5] Andrea Damascelli, Phys. Scr. T109, 61-74, 2004
[6] Seah, M. P. and Dench, W. A., Surf. Interface Anal. 1, 2 (1979)
[7] Hans Lüth, Surface and interface of solids Materials,3rd edition,
Springer
[8] Stefan H¨ufner, Photoelectron Spectroscopy, Springer
[9] R.Shankar, Principles of Quantum Mechanics, 2nd edition
[10] M. Milum, P. Pervan and D. P. Woodruff, Rep. Prog. Phys. 65 (2002)
99-141
[11] Chin-Yung Wang, Study of interfacial structure for thin films of TTC
on uniform silver thin films by ARPES, Master thesis, National Tsing
Hua University(2012)
[12] User Manual SCIENTA R3000, VG SCUENTA
[13] Mary Hope Upton, Photoemission Studies of the Electron Structures
and Properties of Thin Lead Films, Ph.D. thesis, University of
Illinois at Urbana-Champaign (2005)
[14] www.nsrrc.org.tw
[15] S.-J. Tang, et al. Phys. Rev. B 78, 245407 (2008)
[16] H. Fukagawa, S. Hosoumi, H. Yamane, S. Kera; N. Ueno, Phys. Rev. B
2011, 83,085304
[17] F. Latteyer, H. Peisert, U. Aygül, I. Biswas, F. Petraki, T. Basova,
A. Vollmer,and T. Chassé, J. Phys. Chem. C 2011, 115, 11657-11665
[18] Y. L. Huang, et al, Phys. Rev. B 87, 085205 (2013)
[19] Calibration of Photoemission Spectra and Work Function Determination
by Dr.Rudy Schlaf
[20] Chih-Hao Pan, The study of interfacial electronic structures of
differentlong-chain molecules on top of the uniform silver thin
films by ARPES, Master thesis, National Tsing Hua University(2013)
[21] Y. L. Huang, et al, Phys. Rev. B 87, 085205 (2013)
[22] Colloid Polym Sci 270:621-626 (1992)
[23] DAISUKE YOSHIMURA and KAZUHIKO SEKI, Surface Review and Letters,
Vol.9, Nos. 1 (2002) 407-412
[24] J. Vac. Sci. Technol. A 28, 795 (2010)
[25] RADAK Furnance Installation and Operation Instructions
[26] SQM 160 Rate/Thickness Monitor User’s Guide, LEYBOBD INFICON INC.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *