帳號:guest(3.14.129.236)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林駿
作者(外文):LIN, CHUN
論文名稱(中文):高效率糾纏光子對的產生及量測
論文名稱(外文):Demonstration of a high-efficiency biphoton source
指導教授(中文):褚志崧
指導教授(外文):Chuu, Chih-Sung
口試委員(中文):施宙聰
余怡德
口試委員(外文):Shy, Jow-Tsong
Yu, Ite
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:102022537
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:70
中文關鍵詞:糾纏光子
外文關鍵詞:biphoton
相關次數:
  • 推薦推薦:0
  • 點閱點閱:231
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  單光子和糾纏光子在量子物理學上佔有十分重要的一席之地,其扮演著實現量子電腦與量子密碼學中最重要的基石。所以,產生優秀的糾纏光子源儼然成為了量子光學研究中的核心。過去雖然也有人達成高效率的糾纏光子對,但往往是在Cavity、脈衝雷射等方法下達成。在不使用上述方法時,糾纏光子對的detection rate約為900(1/s/mW)[4-1]。我們利用一台中心波長為532nm的連續式雷射,將其打入一塊非線性光學晶體(KTP晶體),找到了一組高效率的糾纏光子對,其detection rate高達26675(1/s/mW)。這對糾纏光子對為Type II SPDC,兩光子之波長分別為1038nm與1091.2nm。進一步的,在實驗上我們藉由改變不同的實驗架構去觀察這對糾纏光子的不同性質,包含biphoton rate、anticorrelation parameter、spectrum和Franson Interference。
Single and entangled photons, in particular, have now played an important role in quantum physics. They are the most important cornerstone to realize quantum computers and quantum cryptography. It is therefore necessary to develop high-efficiency entangled photon source for studying quantum optics. Although high efficiency entangled photon pairs have been demonstrated, they are often achieved with cavity and pulsed lasers. When not using the above method, the highest reported detection rate of entangled photon pairs is about 900 (1/s/mW). We use continuous wave laser which wavelength is 532nm, focused into a nonlinear optical crystal (KTP crystal). We observed a highly efficient entangled photon pairs with a detection rate up to 26675 (1/s/mW). These entangled photon pairs are of Type II Spontaneous parametric down-conversion, with wavelengths of 1038nm and 1091.2nm. In addition, we use various methods to measure their intensity correlation and to explore their properties, including biphoton rate, anticorrelation parameter, spectrum and Franson Interference.
摘要 i
誌謝 iii
目錄 iv
圖目錄 vi
第1章 實驗目的與動機 1
第2章 基本原理 3
2.1 馬克士威方程組(Maxwell’s equations) 3
2.2 非線性效應 4
2.3 耦合方程組(coupled equation) 6
2.4 糾纏光子(time-energy entanglement photon) 10
2.5 單光子探測儀(Single photon detector) 11
2.6 Coincidence Counts 12
2.7 抗相關性係數(anticorrelation parameter) 16
2.8 Franson interference 19
第3章 實驗參數的估計 26
3.1 Phase matching波長與晶體折射率 26
3.2 糾纏光子對時域上波包寬度 27
3.3 Lens挑選與spot size計算 30
3.4 頻譜 33
3.5 糾纏光子對generation rate 38
第4章 實驗系統架設與測量 40
4.1 實驗架構 40
4.2 anticorrelation parameter(twofold coincidence count) 42
4.3 anticorrelation parameter(threefold coincidence count) 48
4.4 頻譜 50
4.5 Franson interference 53
第5章 討論與總結 59
參考文獻 60
1-1. A. Kuhn, M. Hennrich, and G. Rempe, Deterministic Single-Photon Source for Distributed Quantum Networking, Phys. Rev. Lett. 89, 067901(2002).
1-2. V. Balic´, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, Generation of Paired Photons with Controllable Waveforms, Phys. Rev. Lett. 94, 183601 (2005).
1-3. M. Scholz, L. Koch, R. Ullmann, and O. Benson, Single-mode operation of a high-brightness narrow-band single-photon source, Appl. Phys. Lett. 94 , 201105 (2009).
2-1. Robert W. Boyd - Nonlinear Optics Third Edition.
2-2. Chih-Sung Chuu - ABCD Formulism for Spontaneous Parametric Down Conversion
2-3. S. E. Harris, RESEARCH STUDIES ON PHOTONS AND BIPHOTONS
2-4. Brett J. Pearsona , David P. Jackson , Am. J. Phys., Vol. 78, No. 5, May 2010
2-5. J. D. Franson, Bell Inequality for Position and Time, PHYSICAL REVIEW LETTERS, VOLUME 62, NUMBER 19, 2205 (1989)
2-6. Mermin, N. Is the moon there when nobody looks? Reality and the quantum theory. Physics Today. April 1985, 38 (4): 38–47
2-7. Einstein, A; B Podolsky; N Rosen. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Physical Review. 15 May 1935, 47 (10): 777–780.
2-8. Reid, M. D.; et al., Colloquium: The Einstein-Podolsky-Rosen paradox:From concepts to applications, REVIEWS OF MODERN PHYSICS, 2009, 81: pp. 1727–1751.
2-9. Blaylock, Guy. The EPR paradox, Bell's inequality, and the question of locality. American Journal of PHysics. 2010-01, 78 (1): 111–120.
2-10. Griffiths, David J., Introduction to Quantum Mechanics (2nd ed.), Prentice Hall, (2004)
2-11. P. G. Kwiat and W. A. Vareka, C. K. Hong and H. Nathel, R. Y. Chiao, Correlated two-photon interference in a dual-beam Michelson interferometer, PHYSICAL REVIEW A VOLUME 41, NUMBER 5, p2910 (1990)
2-12. S. Sensarn, I. Ali-Khan, G.Y. Yin, and S.E. Harris, “Resonant Sum Frequency Generation with Time-Energy Entangled Photons,” Phys. Rev. Lett., 102, 053602 (2009).
2-13. S. E. Harris, chirp and Compress: Toward Single-Cycle Biphotons, PRL 98, 063602 (2007)
3-1. Kato, Sellmeier and thermo-optic dispersion formulas for KTP, Appl. Opt. 41, 5040 (2002)
3-2. Steven Sensarn, NONLOCAL MODULATION AND DISPERSION
3-3 M.V. Pack, D.J. Armstrong, A.V. Smith, Measurement of the χ(2) tensors of KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4 crystals, Appl. Opt., 43 , p. 3319 , (2004)
4-1. Christian Kurtsiefer, Markus Oberparleiter, and Harald Weinfurter, High-efficiency entangled photon pair collection in type-II parametric fluorescence, Phys. Rev. A 64, 023802 – Published 2 July 2001
4-2. Vincent Jacques, E Wu, Frédéric Grosshans, François Treussart, Philippe Grangier, Alain Aspect, Jean-François Roch, Experimental Realization of Wheeler’s Delayed-Choice Gedanken Experiment, VOL 315 SCIENCE (2007)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *