帳號:guest(18.226.34.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳姿妤
作者(外文):Chen, Zih Yu
論文名稱(中文):多層抗反射膜在兆赫波頻段之設計
論文名稱(外文):A design of broadband multilayer antireflection coating in THz region
指導教授(中文):張存續
指導教授(外文):Chang, Tsun Hsu
口試委員(中文):潘犀靈
嚴大任
黃衍介
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:102022526
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:62
中文關鍵詞:多層抗反射二項式多級阻抗匹配等效介質理論
外文關鍵詞:Antireflection coatingeffective medium theorybinominal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:98
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
此篇論文提出一個新的方法設計並實現多層抗反射鍍膜。多層抗反射膜各層的折射率是利用二項式響應的多級阻抗匹配決定,且利用參雜不同體積比例的高阻值矽之奈米粉末(用來合成相對高折射率的抗反射層)或空氣氣泡(用來合成相對低折射率的抗反射層)至高密度聚乙烯中來得到所需要的折射率。根據上述的方法,能針對兆赫波頻段設計出應用於矽基板的多層抗反射鍍膜。可操作的頻段範圍是介於0.250 THz到0.919 THz之間(頻寬為114.46%),在此範圍內穿透值可高於95%以上。此結果適用於TE及TM偏振方向且入射角度範圍可適用於0°到50°。
A new approach to design and realize a broadband multilayer anti-reflection (AR) coating is proposed in this study. The binominal multi-section transformer is employed to efficiently determine the thickness and the refractive index of each matching layer, while those layers can be further realized by doping different fraction of silicon nano powders (for relatively-high-index layers) or air pores (for relatively-low-index layers) into the low-loss HDPE polymer. Based on this scheme, we design a ten-layer AR coating for widely used silicon wafer. The designed AR coatings are double-side integrated with a 375-μm-thick silicon wafer, which is able to enhance the overall THz transmission to higher than 95.00% from 0.250 THz to 0.919 THz (114.46% bandwidth) for either TE-polarized or TM-polarized THz beam incident from arbitrary angle below 50º.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第1章 緒論 1
1.1 抗反射鍍膜-簡介 1
1.2 抗反射鍍膜在可見光及紅外光之應用 2
1.3 抗反射鍍膜在兆赫波之簡介 3
1.31 兆赫波的簡介 4
1.32 兆赫波的應用研究 4
1.33 抗反射鍍膜在兆赫波之文獻回顧 6
1.4 研究動機 9
第2章 理論基礎 10
2.1 兩介質界面之穿透反射 10
2.2 多層介質界面之穿透與反射 12
2.21 傳遞矩陣法介紹(transfer matrix method) 12
2.22 傳遞矩陣法在多層介質上之運用 12
2.3 斜向入射至多層介質 15
2.31 橫向電場(Transverse Electromagnetic Wave) 15
2.32 橫向磁波(Transverse Magnetic Wave) 17
2.4 單層抗反射鍍膜理論推導 19
2.41 厚度之選擇 19
2.42 折射率之選擇 20
2.5 多層抗反射鍍膜理論推導 22
2.51 二項式響應(Binomial Multi-Section Transformer) 23
2.52 柴比雪夫響應(Chebyshev Multi-Section Transformer) 24
2.53 比較兩個不同阻抗匹配的結果 26
2.6 等效介質理論 27
2.61 不同物裡模型之介紹 27
2.62 理論與實驗之比較 29
第3章 多層雙邊抗反射鍍膜設計與模擬 32
3.1 設計各層折射率及厚度 33
3.2 設計之實現 35
3.21 材料之選擇 37
3.22 各層抗反射膜參雜之比例 39
3.3 設計結果與討論 40
3.31 正向入射之穿透與反射 40
3.32 時域之相關討論 43
3.33 斜向入射的穿透與反射 45
第4章 結論 58
參考資料 59
[1] J.D. Jackson, Classical Electrodynamics, 3rd ed.
[2] T.H Chang, Lecture note of course Electrodynamics
[3] D.J. Griffiths, Introduction to Electrodynamics, 3rd ed.
[4] 凃正中,“金屬奈米陣列結構於塑膠基材上光學性質研究” 國立交通大學機械工程研究所碩士論文 2008年6月
[5] 林威呈,“利用 THz-TDs的方法量測複數材料的介電係數和導磁係數” 國立清華大學物理研究所碩士論文 2014年6月
[6]王宗新,“金字塔抗反射結構之製作及其單晶矽太陽能電池之應用”國立中山大學光電研究所碩士論文 2007年6月
[7]蕭為元,“抗反射模在顯示技術與太陽能吸收之研究”國立中央大學光電科學與工程研究所碩士論文 2010年6月
[8]黎孝怡,“玻璃面板之抗反射沸石膜”國立中央大學化學工程與材料工程研究所碩士論文 2007年7月
[9]林志雄,“使用反應濺鍍法於塑膠基板上製鍍抗反射模之研究”國立中央大學光電科學與工程學系研究所碩士論文 2008年1月
[10]洪國軒,“二氧化鈦仿生抗反射結構於磷化銦鎵/砷化銦鎵/鍺三接面太陽電池” 國立交通大學光電工程研究所碩士論文 2012年8月
[11] A. Wagner-Gentner, U. U. Graf, D. Rabanus, and K. Jacobs, “Low loss THz window,” Infrared Phys. Technol. 48, 249 (2006).
[12] S. -Z. A. Lo and T. E. Murphy, “Nanoporous silicon multilayers for terahertz filtering,” Opt. Lett. 34, 2921 (2009).
[13] Y. Li, Y. Xiang, S. Wen, J. Yong, and D. Fan, “Tunable terahertz-mirror and multi-channel terahertz-filter based on one-dimensional photonic crystals containing semiconductors,” J. Appl. Phys. 110, 073111 (2011).
[14]H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, S191–S198 (2005).
[15] B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50, 2256 (2011).
[16] Y.A. Vlasov, W.M.J. Green and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks.” Nature Photon. 2, 242-246 (2008)
[17] A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microwave Guided Wave Lett. 10, 264 (2000).
[18] K. Kawase and N. Hiromoto, “Terahertz-wave antireflection coating on Ge and GaAs with fused quartz,” Appl. Opt. 37, 1862–1866 (1998).
[19] M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691, (1990).
[20] I. Hosako, "Multilayer optical thin films for use at terahertz frequencies: method of fabrication," Appl. Opt. 44, 3769-3773 (2005).
[21] D. Poitras, and J. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43, 1286-1295 (2004).
[22] J. A. Dobrowolski, Y. Guo, T. Tiwald, P. Ma, and D. Poitras, “Toward perfect antireflection coatings. 3. Experimental results obtained with the use of Reststrahlen materials,” Appl. Opt. 45, 1555–1562 (2006).
[23] Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94, 041106 (2009).
[24] C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, “Broadband antireflective surface-relief structure for THz optics,” Opt. Express 15, 779–789 (2007).
[25] Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770– 774 (2007).
[26] B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B 28, 917–921 (2011).
[27] A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg Fibers,” J. Opt. Soc. Am. B 28, 896–907 (2011).
[28] D. M. Pozar, Microwave Engineering 3e. (2006).
[29] J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004).
[30] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007)
[31] M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527 (2008)
[32] H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4, 3779– 3804 (2011)
[33] W.H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8, 584-586 (1983)
[34] V. Myroshnychenko and C. Brosseau, “Finite-element modeling method for the prediction of the complex effective permittivity of two-phase random statistically isotropic heterostructures,” J. Appl. Phys. 97, 044101 (2005).
[35] M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009)
[36] Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513 (2006)
[37] Z. Li and L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[38] H. G. Winful, “Group delay, stored energy, and the tunneling of evanescent electromagnetic waves,” Phys. Rev. E 68, 016615 (2003).
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *