帳號:guest(3.16.47.86)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭富中
作者(外文):Xiao, Fu Zhong
論文名稱(中文):以氫原子侵蝕 Bi2Se3(0001) 晶面生成單層鉍雙層之電子能帶結構
論文名稱(外文):Electronic Band Structure of the Single Bi-bilayer Produced by Hydrogen-radical etching on Bi2Se3(0001)
指導教授(中文):林登松
指導教授(外文):Lin, Deng Sung
口試委員(中文):鄭澄懋
江台章
唐述中
口試委員(外文):Cheng, Cheng Maw
Chiang, Tai Chang
Tang,Shu Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:102022519
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:105
中文關鍵詞:拓樸絕緣體單層鉍雙層
外文關鍵詞:Topological insulatorBi-bilayer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:919
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
自由立態(Free Standing) Single Bi-bilayer 被預測二為拓樸絕緣體,並於Single Bi-bilayer/Bi2Te3(0001) 系統中獲得實驗證實,導致近年來成長高品質Single Bi-bilayer 成為熱門課題。目前,高品質的 Single Bi-bilayer 可透過分子束磊晶(MBE)於 Bi2Se3(0001) 晶面上成長 Bi 薄膜達成,且其表面形貌、能帶結構量測亦已得到,而氫原子侵蝕 Bi2Se3(0001) 晶面所取得的高品質的 Single Bi-bilayer 覆蓋率試樣,經預測具相同電子能帶結構,只是目前尚未有量測結果。
氘原子侵蝕 Bi2Se3(0001) 晶面的試樣表面結構探究藉掃描穿隧電子顯微術(STM)進行,試樣表面成分分析則利用X 射線光電子能譜術(XPS)與真空紫外光光電子能譜術(UPS),其中, Bi 原子 5d 核層電子訊號的量測,前後量者入射光能量分別為 380 eV 與 55 eV 。透過以上研究結果,們獲得以下推論 : 定義一層 Bi-bilayer 為 BL ,氘原子侵蝕 Bi2Se3(0001) 晶面後,試樣表面近 1.5 層 Quintuple layer (QL) 被破壞且 Bi-bilayer 飽和覆蓋量為 1.30±0.02 BL 。除此之外,上述的 X 射線光電子能譜術(XPS)與真空紫外光光電子能譜術(UPS)成果,本研究中 Bi 薄膜在 Bi2Se3(0001) 晶面上的蒸鍍厚度亦以之為參考。
實驗試樣的電子能帶結構以角解析光電子能譜(ARPES)量測,其中,試樣費米能級(E_F)透過 Ag(111) 單晶校訂。由於 Single Bi-bilayer/Bi2Se3(0001) 系統不論是以氫(氘)原子侵蝕製程還是以分子束磊晶(MBE)製程,狄拉克點 D_B 、 D_S 之間的束縛能差額 〖∆E〗_B≅0.3 Ev ,上(SSu)、下(SSd)自旋電子在 E_B=0.000 eV 或 E_B=0.540 eV 時被允許存在的動量位置點差額 〖∆k〗_(||)≅0.235 eV 或 〖∆k〗_(||)≅0.215 eV ,所以我們可歸納出以下論點 : 兩種製程方式成長出來的Single Bi-bilayer/Bi2Se3(0001) 電子能帶結構基本上無太大差異。
故透過本研究,得到以下兩結論,第一,氘原子侵蝕 Bi2Se3(0001) 晶面後,試樣表面近 1.5 層 Quintuple layer (QL) 被破壞且 Bi-bilayer 飽和覆蓋量為 1.30±0.02 BL 。第二,氫(氘)原子侵蝕 Bi2Se3(0001) 晶面取得的高品質 Single Bi-bilayer 覆蓋試樣,其表面電子能帶結構與分子束磊晶(MBE)於 Bi2Se3(0001) 晶面成長的 Single Bi-bilayer 相同。
Free standing Bi-bilayer has been predicted as a two dimensional topological insulator. Therefore, how to prepare a high quality Bi-bilayer thin film becomes a hot research topic. The electronic band structure of the MBE single Bi-bilayer on the Bi2Se3(0001) surface had been revealed by Lin Miao et al. Recently, Roozbeh Shokri et al. suggested that the samples with high single Bi-bilayer coverage can be produced by the hydrogen radical etching process and that the band structure of H-etching Bi-bilayer/Bi2Se3(0001) system is similar to that grown by MBE. However, the band structure of the H-etching Bi-bilayer/Bi2Se3(0001) system had not been measured before.
In this work, we will measure its band structure by angle resolved photoemission.We have first prepared the Bi-bilayer by H-etching of the cleaved Bi2Se3(0001) surface. Then we studied its surface morphology and the atomic structure by scan tunneling microscopy (STM) and have analyzed stoichemistry on the surface by means of the ultraviolet photoemission spectroscopy (UPS) and the X-ray photoemission spectroscopy (XPS) with photo energy 55 eV and 380 eV respectively. By combining the results from STM, XPS and UPSs, we can conclude that, the Bi-bilayer coverage on the deuterium radical etching Bi2Se3(0001) is 1.30±0.02 Bi-bilayer when the effect of deuterium radical etching was saturated at the expense of about 1.5 Quintuple layer (QL) The coverage of single Bi-bilayer is about 70 % on the top of sample. Our results from STM, XPS and UPS provide not only a good evidence for our first conclusion but also a reference for the Bi deposition rate estimation for the ARPES experiment.
In our ARPES experiment, the Fermi-level E_F was first calibrated by Ag(111) crystal and the thickness of Bi film was estimate by STM, UPS and XPS. The ARPES results show that, no matter which well performance single Bi-bilayer growth mode we chosed, by low temperature (200 K) MBE process or room temperature hydrogen radical-etching process, the electronic band structure is the same ”. The reasons were two folds, first, the binding energy difference 〖∆E〗_B between Dirac point D_B and D_S are 0.3 eV. Second, the momentum difference 〖∆k〗_(||) between spin up state electron and spin down state electrons at E_B=0.000 eV and E_B=0.540 eV are 〖∆k〗_(||)≅0.235 Å^(-1) 〖∆k〗_(||)≅0.215 Å^(-1).
In conclusion, we can get two points. First, “ the Bi-bilayer coverage on the deuterium radical etching Bi2Se3(0001) will be 1.30±0.02 Bi-bilayer when the effect of deuterium radical etching was saturate ”. Second, “ no matter which well performance single Bi-bilayer growth mode we chosed, by low temperature (200 K) MBE process or room temperature hydrogen radical-etching process, the electronic band structure is the same ”.
中文摘要
I
Abstract
III
致謝
V
目錄
VI
第一章 介紹
1
1.1 實驗動機
1
1.2 拓樸絕緣體
2
1.3 三維拓樸絕緣體 ─ Bi2Se3(0001)
4
1.4 二維拓樸絕緣體 ─ Bi-bilayer, Bi-BL
5
1.5 文獻回顧
7
1.5.1 氫原子侵蝕 Bi2Se3(0001) 晶面原子模型與電子能帶結構模擬
7
1.5.2 分子束磊晶成長 Bi-bilayer 於 Bi2Se3(0001) 晶面之能帶結構
10
1.5.3 Bi2Se3(0001) 晶面上之多層 Bi-BL 莫列波紋(Moiré pattern)
13
第二章 : 背景知識
16
2.1 晶格(Lattice)與倒晶格(Reciprocal lattice)
16
2.2 同步輻射光源(Synchrotron Radiation Light Source)
18
2.2.1注射器(Injector, LINAC and Booster ring)
20
2.2.2 儲存環(Storage Ring)
20
2.2.3 光束線(Beam-Line)
21
2.2.3.1 台灣光源(TLS) BL21B U9-CGM 光譜光束線
22
2.2.3.2 台灣光源(TLS) BL24A Wide Range SGM光束線
23
2.2.4 實驗站(End station)
24
2.2.4.2 角解析光電子能譜術(ARPES)實驗站
24
2.2.4.3 X 射線光電子能譜術(XPS)實驗站
26
2.3 分子束磊晶(Molecular beam epitaxy, MBE)
26
第三章 : 技術與儀器
28
3.1 光電子能譜術(Photoemission Spectroscopy, PES)
28
3.1.1 簡介
28
3.1.1.1 二次電子訊號(Secondary electrons)
30
3.1.1.2 核層電子訊號(Core level)
30
3.1.1.3 價電帶電子訊號(Valance band)
31
3.1.2 光電子能譜術理論模型
32
3.1.2.1 第一階段 : 光致電子躍遷
32
3.1.2.2 第二階段 : 受激電子遷移至材料表面
34
3.1.2.3 第三階段 : 受激電子自材料表面離開
35
3.1.3 角解析光電子能譜術(Angle Resolved Photoemission Spectroscopy)
37
3.1.3.1 能量與動量解析度
37
3.1.3.2 光源限制
40
3.1.4 X 射線光電子能譜術(X-ray Photoemission Spectroscopy, XPS)
42
3.2 掃描穿隧電子顯微鏡(Scanning Tunneling Microscope, STM)
43
3.2.1 量子穿隧效應
43
3.2.2 掃描穿隧電子顯微術(STM)構造
45
3.3 超高真空系統
47
3.3.1 何謂「真空」
47
3.3.2 真空幫浦(Pump)與氣壓計(Gauge)
48
3.3.2.1 乾式渦捲式幫浦(Dry Scroll Pump)
48
3.3.2.2 渦輪分子幫浦(Turbo Molecular Pump, TMP)
49
3.3.2.3 離子幫浦(Ion Pump)
50
3.3.2.4 鈦昇華幫浦
51
3.3.2.5 冷凍幫浦(Cryo Pump)
52
3.3.2.6 熱電偶真空計(Convectron Gauge)
52
3.3.2.7 離子真空計(Ion Gauge)
53
3.3.3 其餘抽真空技術
53
3.3.3.1 烘烤(Bake Out)
53
3.3.3.2 釋氣(Degas)
54
第四章 實驗結果與分析
57
4.1 乾淨表面之 Bi2Se3(0001) 單晶
57
4.1.1 掃描穿隧電子顯微鏡(STM)、 X 射線光電子能譜術(XPS)試樣製備
57
4.1.2 角解析光電子能譜術(ARPES)試樣製備
58
4.1.3 乾淨 Bi2Se3 (0001) 晶面
60
4.2 以STM探究室溫氘原子侵蝕 Bi2Se3 (0001) 晶面形貌
62
4.2.1 氘氣曝氣量 30 L 之結果
66
4.2.2 氘氣曝氣量 50 L 之結果
67
4.2.3 氘氣曝氣量 400 L 之結果
69
4.2.4 氘氣曝氣量 650 L 之結果
70
4.2.5 氘氣曝氣量 1250 L 之結果
72
4.2.6 氘氣曝氣量 1750 L 之結果
73
4.2.7 氘氣曝氣量 2000 L 之結果
74
4.2.8 各式 Bi-bilayer 覆蓋率與氘曝氣劑量關係
77
4.3 XPS、UPS 探究
78
4.3.1室溫氫原子侵蝕(H-radical etching) Bi2Se3 (0001) 結果
78
4.3.2室溫分子束磊晶(MBE)長成 Bi-bilayer於Bi2Se3(0001) 結果
84
4.4 ARPES 探究
87
4.4.1 室溫氫原子侵蝕(H-radical etching) Bi2Se3 (0001) 結果
87
4.3.2 室溫分子束磊晶(MBE)長成 Bi-bilayer 於 Bi2Se3(0001) 結果
92
4.3.3 氫原子侵蝕(H-radical etching) 與分子束磊晶(MBE)長成比較
94
第五章 結論
99
參考資料
101
圖片目錄
103

[1] F. Yang et al., Physical review letters 109, 016801 (2012).
[2] Z. F. W. Lin Miao, Wenmei Ming, Meng-Yu Yao, Meixiao Wang, Fang Yang, Y. R. Song, Fengfeng Zhu, Alexei V. Fedorov, Z. Sun, C. L. Gao, Canhua Liu, Qi-Kun Xue, Chao-Xing Liu, Feng Liu, Dong Qian, and Jin-Feng Jia, Proceedings of the National Academy of Sciences 110, 2758 (2013).
[3] R. Shokri, H. L. Meyerheim, S. Roy, K. Mohseni, A. Ernst, M. M. Otrokov, E. V. Chulkov, and J. Kirschner, Physical Review B 91 (2015).
[4] A. J. C. J. Powell, S. Tanuma, D. R. Penn, H. Bethe, C. S. Fadley, W. S. M. Werner, L. Kover, J. Toth, D. Varga, J. G. Beamson, N. Moslemzadeh, P. Weightman, J. F. Watts., Figures for electron inelastic mean free paths for 41 elemental solids over 10 eV to 30,000 eV 2012), Database of electron inelastic mean free path for elemental solids, p.^pp. 19.
[5] J. D. Bourke and C. T. Chantler, Journal of Electron Spectroscopy and Related Phenomena 196, 142 (2014).
[6] K. v. Klitzing, Nobel lecture (1985).
[7] R. B. Laughlin, Nobel lecture (1998).
[8] D. C. Tsui, Nobel lecture (1998).
[9] H. L. Stormer, Nobel lecture (1998).
[10] 王律堯, 台灣磁性技術協會會訊 49 (2009).
[11] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Physical review letters 94, 047204 (2005).
[12] C. A. Hoffman, J. R. Meyer, F. J. Bartoli, A. Di Venere, X. J. Yi, C. L. Hou, H. C. Wang, J. B. Ketterson, and G. K. Wong, Physical Review B 48, 11431 (1993).
[13] I. K. Drozdov, A. Alexandradinata, S. Jeon, S. Nadj-Perge, H. W. Ji, R. J. Cava, B. A. Bernevig, and A. Yazdani, Nature Physics 10, 664 (2014).
[14] C.-L. Gao, D. Qian, C.-H. Liu, J.-F. Jia, and F. Liu, Chinese Physics B 22, 067304 (2013).
[15] L.-Z. Yao, Master Thesis, National Sun Yat-sen University, 2014.
[16] 拓樸絕緣體簡介, (張天蓉).
[17] M.-C. Chang, in Berry phase in solid state physicsNational Taiwan Normal University, 2009), pp. 12.
[18] Y. Ando, Journal of the Physical Society of Japan 82, 102001 (2013).
[19] K. Kuroda et al., Physical review letters 105, 076802 (2010).
[20] X. Wang, G. Bian, T. Miller, and T. C. Chiang, Physical review letters 108, 096404 (2012).
[21] W. Zhang, R. Yu, H.-J. Zhang, X. Dai, and Z. Fang, New Journal of Physics 12, 065013 (2010).
[22] K. F. Zhang, F. Yang, Y. R. Song, C. Liu, D. Qian, C. L. Gao, and J.-F. Jia, Applied Physics Letters 107, 121601 (2015).
[23] C. Kittel, in Introduction to Solid State Physics, edited by 82005), pp. 7.
[24] Brillouin_zone, (en.wikipedia).
[25] Cubic_crystal_system, (en.wikipedia).
[26] Hexagonal_crystal_system, (https://en.wikipedia.org/wiki/Hexagonal_crystal_system).
[27] C. Kittel, in Introduction to Solid State Physics, edited by 82005), pp. 31.
[28] 同步加速器光源簡介, (NSRRC).
[29] P. J. Chou, Design Guidelines of Synchrotron Light Sources, 2014.
[30] BL21B U9-CGM Spectroscopy Beamline, (NSRRC).
[31] BL24A Wide Range SGM Beamline, (NSRRC).
[32] J. R. A. A.Y. Cho, Progress in Solid State Chemistry 10, 157 (1975).
[33] A. Damascelli, Physica Scripta. (2004).
[34] J. J. Sakruia, in Modern Quantum Mechaincs1994), p. 362.
[35] G. Somarjai, in Chemistry in two dimensions (Cornell University, 1981), p. 575.
[36] M. D. Seah, W., in Surf. Interface Anal1979), p. 1.
[37] C. Kittel, in Introduction to Solid State Physics, edited by 82005), p. 167.
[38] DA30-L, (Scientaomicorn).
[39] A. Damascelli*, REVIEWS OF MODERN PHYSICS 75, (2003).
[40] Scienta, Description of the Length Count Scienta, 2010), Scienta User Manual.
[41] X-ray photoelectron spectroscopy, (en.wikipedia).
[42] C.-Y. Lin, Master Thesis, National Tsing Hua University, 2013.
[43] Edwards nXDS10iC 7.5 cfm Chemical-Resistant Dry Scroll Pump, (Across International).
[44] Turbomolecular pump, (en.wikipedia).
[45] Turbo Molecular Pumps, (Osaka Vacuum, Ltd.).
[46] Ion_Pump_Operation, (Northern Arizona University).
[47] 鈦昇華幫浦, (baike).
[48] 真空狀態的達成 : 各種抽氣技術的介紹, (JunSun Tech.).
[49] W.-C. Chen, Master Thesis, National Tsing Hua University, 2011.
[50] N.-Y. Wang, Master Thesis, National Tsing Hua University, 2015.
[51] M. V. Kuznetsov et al., Physical Review B 91 (2015).
[52] M. Bianchi, D. Guan, S. Bao, J. Mi, B. B. Iversen, P. D. King, and P. Hofmann, Nature communications 1, 128 (2010).
[53] Q. D. Gibson et al., Physical Review B 88 (2013).
[54] F. Song, J. W. Wells, Z. Jiang, M. Saxegaard, and E. Wahlstrom, ACS applied materials & interfaces 7, 8525 (2015).
[55] X. He, W. Zhou, Z. Y. Wang, Y. N. Zhang, J. Shi, R. Q. Wu, and J. A. Yarmoff, Physical review letters 110, 156101 (2013).
[56] T. Hirahara et al., Physical review letters 109, 227401 (2012).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *