帳號:guest(18.119.135.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):戴維儀
作者(外文):Tai, Wei-Yi
論文名稱(中文):自旋1的雙線性-雙二次模型的數值研究
論文名稱(外文):Numerical study of spin-onebilinear-biquadratic model
指導教授(中文):陳柏中
指導教授(外文):Chen, Po Chung
口試委員(中文):牟中瑜
高崇文
口試委員(外文):Mou, Chung-Yu
Kao, Chung Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:102022512
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:67
中文關鍵詞:自旋為1 的雙線性-雙二次的模 型
外文關鍵詞:Spin one (BLBQ)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
這份論文主要的目的是探究鐵磁性糾纏行為.在量子資訊科學裡,糾纏是一基本的概念,其與多體物理的關聯在近來倍受關注,尤其是在臨界的區域裡,一維量子自旋鏈的糾纏與連續性的共形場理論(CFT)之間的對應關係.我們闡釋這層概念是藉由自旋為1 的雙線性-雙二次(spin-1 BLBQ) 的模型來討論,並應用了SU(2)對稱性和周期邊界條件,接著設計一套方法去測量鐵磁性糾纏的中心電荷(central charge)大小。在這裡我們主要用的演算法,是應用了Steven R. White 創造出的密度矩陣重整化群(Density MatrixRenormalization Group),這項發明可以解決希爾伯特空間(Hilbert space),隨指數成長的問題。此外,我們也使用了由Prof. Ian Peter McCulloch 所發展的Matrix Product Toolkit程式,來進行我們研究。
This thesis aims to explore the behavior of the ferromagnetic entanglement. Entanglement is an essential concept in quantum information science and the connection to many-body physics is recently enshrined. In particular the system of one-dimensional quantum critical chain and the corresponding conformal field theory (CFT) in the continuum limit. At first, we illustrate the idea by using spin-1 bi-linear bi-quadratic (BLBQ) model with SU(2) symmetry with periodic boundary condition. Then we design an approach to measure the effective central charge and the crossover length associated with the ferromagnetic entanglement. We applied the density matrix renormalization group (DMRG) method to obtain the ground state wave function and the entanglement. DMRG is invented by Prof. Steven R. White. It can address the problem of the exponential growth of the system size in the Hilbert space for the case of one-dimensional system. Finally we use the package called ``Matrix Product Toolkit’’ which was developed by Prof. Ian P. McCulloch to carry out the calculation.
1 Introduction 6
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Entropy 9
2.1 Entanglement Entropy . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 R´enyi entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Symmetry 15
3.1 U(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 SU(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Algorithm 22
4.1 iDMRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 DMRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Spin1 BLBQ 29
5.1 finite size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 infinite size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6 Summary 59
A Singular value decomposition (SVD) 62
A.1 Right-canonical matrix product state . . . . . . . . . . . . . . . 62
A.2 Left-canonical matrix product state . . . . . . . . . . . . . . . 64
Reference 65
[1] CD Batista, G Ortiz, and JE Gubernatis. Unveiling order behind complexity: Coexistenceof ferromagnetism and bose-einstein condensation.Physical Review B, 65(18):180402, 2002.[2] PA Bromiley, NA Thacker, and E Bouhova-Thacker. Shannon entropy, renyi entropy, andinformation.Rapport technique, School of Cancer and Imaging Sciences, University ofManchester, 93, 2004.[3] Pasquale Calabrese and John Cardy. Entanglement entropy and quantum eld theory.Journal of Statistical Mechanics: Theory and Experiment, 2004(06):P06002, 2004.[4] John Cardy and Pasquale Calabrese. Unusual corrections to scaling in entanglement en-tropy.Journal of Statistical Mechanics: Theory and Experiment, 2010(04):P04023, 2010.[5] Jens Eisert, Marcus Cramer, and Martin B Plenio. Colloquium: Area laws for the entan-glement entropy.Reviews of Modern Physics, 82(1):277, 2010.[6] Adrian E Feiguin. The density matrix renormalization group. InStrongly CorrelatedSystems, pages 31{65. Springer, 2013.[7] Christoph Holzhey, Finn Larsen, and Frank Wilczek. Geometric and renormalized entropyin conformal eld theory.Nuclear Physics B, 424(3):443{467, 1994.[8] Sidney D. Drell James D. Bjorken.Relativistic Quantum Fields. June 1, 1965.[9] Ian P McCulloch. In nite size density matrix renormalization group, revisited.arXivpreprint arXiv:0804.2509, 2008.[10] Frank Pollmann, Subroto Mukerjee, Ari M Turner, and Joel E Moore. Theory of nite-entanglement scaling at one-dimensional quantum critical points.Physical review letters,102(25):255701, 2009.[11] Chris Quigg.Gauge theories of the strong, weak, and electromagnetic interactions. Prince-ton University Press, 2013.[12] ALFRPED Rrnyi. On measures of entropy and information. InFourth Berkeley symposiumon mathematical statistics and probability, volume 1, pages 547{561, 1961.[13] Ulrich Schollwock. The density-matrix renormalization group.Reviews of Modern Physics,77(1):259, 2005.[14] Ulrich Schollwock. The density-matrix renormalization group in the age of matrix productstates.Annals of Physics, 326(1):96{192, 2011.[15] David Tong. University of cambridge part iii mathematical tripos.arXiv preprintarXiv:0908.0333, 2009.[16] Steven R White. Density matrix formulation for quantum renormalization groups.PhysicalReview Letters, 69(19):2863, 1992.[17] Steven R White. Density-matrix algorithms for quantum renormalization groups.PhysicalReview B, 48(14):10345, 1993.67

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *