帳號:guest(3.141.37.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭桓玉
作者(外文):Kuo, Huan-Yu
論文名稱(中文):局部耦合震盪子在一維空間中同步化的數值研究
論文名稱(外文):Numerical Investigations of Synchronization of Locally Coupled Oscillators in One Dimension
指導教授(中文):吳國安
口試委員(中文):陳俊仲
陳宣毅
羅孟宗
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:102022507
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:52
中文關鍵詞:同步化生物同步化震盪子耦合震盪子
外文關鍵詞:synchronizationbiological oscillatorsbiological oscillatorcoupled oscillatorspower-law couplingpower law couplingphase coherenceoscillatory stateKuramoto modellocally coupled
相關次數:
  • 推薦推薦:0
  • 點閱點閱:442
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
本篇論文的研究目的,是為了瞭解有限個數的震盪子,在一維空間中以降冪耦合(power-law coupling)所產生的同步化現象。我們使用連續邊界條件的Kuramoto 模型,並讓系統中的震盪子有柯西分布(Cauchy distribution)的自然頻率。我們發現,當震盪子之間以短距離的降冪耦合,震盪子將個別與局部的平均場耦合;反之,當震盪子之間的耦合是長距離(空間中所有震盪子等價地耦合),每一個震盪子將和整個系統的平均場耦合。為了定量分析短距離的耦合與長距離的耦合對同步化現象的影響,我們定義了一個測量參數ξ,是任兩個相鄰震盪子的局部平均場之差。這個測量參數ξ包含了兩個資訊:有限的震盪子個數和降冪指數,其中降冪指數表示耦合距離的長短。測量參數ξ也代表了平均而言,震盪子的局部平均場(local mean field)與系統的平均場(mean field)之差。當測量參數ξ趨近於零,這個同步化系統實質上是長距離耦合,我們能預測相位角的同調性(phase coherence)。當測量參數ξ大於零,我們發現相位角同調性(phase coherence)會隨時間做週期性地振盪。造成振盪的原因,是因為震盪子出現局部的同步化而非全體同步化,使得系統中的震盪子分裂成較小的同步群體。我們研究判斷條件(occurrence condition)使得同步化系統出現振盪的相位角同調性,發現這個條件與震盪子自然頻率的排列方式有關。我們提出一個系統性的方法,能夠預測振盪的相位角同調性的發生,以及預測震盪子分裂成小群體的細部位置。
The focus of our research is to understand the synchronization phenomena among
a finite size network of oscillators with power-law coupling in an one dimensional
chain. Renormalized Kuramoto model with periodic boundary conditions and
Cauchy distribution of natural frequency are used in this thesis. In locally coupled
system the oscillator couples to its local mean field rather than the mean field in
globally coupling case. In order to analyze synchronization phenomenon of locally
coupled oscillators, we develop a measurement tool, ξ, as the difference of local
order parameter between any two nearest neighbours. The variation contains the
information of system size N and the decay rate of coupling α, and its value shows
how the local mean field deviates from the mean field. As variation decreases to
zero, the phase coherence is independent of the local couplings and system size,
which means that the locally coupled system at low variation is a globally coupled
system. In addition, the phase coherence becomes oscillatory with time as the
variation ξ becomes larger. We find that the occurrence of the oscillatory state is
due to the splitting of oscillators into multiple groups; oscillators in the same group
remain synchronized. The formation of oscillatory state is shown to be sensitive
to initial spatial arrangements of natural frequency of oscillators. We propose a
systematic approach to predict the occurrence condition of oscillatory states.
Contents i
List of Tables ii
List of Figures v
1 Introduction 1
2 Model 6
2.1 Kuramoto model with global interaction . . . . . . . . . . . . . . . 6
2.2 Renormalized Kuramoto model . . . . . . . . . . . . . . . . . . . . 10
2.3 Local mean field and Variation . . . . . . . . . . . . . . . . . . . . 14
2.4 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . 16
3 Result - Synchronization of oscillators with power-law interaction
in one dimension 21
3.1 Plateau Formation and Oscillatory State . . . . . . . . . . . . . . . 21
3.2 Dependence of Dynamical Behaviour on Variation . . . . . . . . . . 32
4 Conclusion and Future Work 41
Reference 46
Appendix 49
A. Coherence of integration form in all-to-all coupling . . . . . . . . . . . 49
B. Coherence of integration form in local field . . . . . . . . . . . . . . . 51
[1] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence Springer, Berlin
(1984).
[2] P. Stange, A.S. Mikhailov, and B. Hess, J. Phys. Chem. B 102, 6273 (1998).
[3] James Pantaleone, Am. J. Phys. 70, 10 (2002).
[4] P. Hadley, M.R. Beasley, and K. Wiesenfeld, Phys. Rev. B 38, 8712 (1988).
[5] G. Filatrella, N.F. Pedersen, and K. Wiesenfeld, Phys. Rev. E 75, 017201
(2007).
[6] Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, and A.-L. Barabási, Nature (Lon-
don) 403, 849 (2000).
[7] Steven H. Strogatz, Daniel M. Abrams, Allan McRobie, Bruno Eckhardt, and
Edward Ott, Nature 438, 43-44 (2005)
[8] J. Buck and E. Buck, Sci. Am. 234, 74 (1976).
[9] J. Buck, Quart. Rev. Biol. 63, 265 (1988).
[10] M.K. McClintock, Nature (London) 392, 232 (1971).
[11] S. Danø, F. Hynne, S.D. Monte, F. d’Ovidio, P.G. Sørensen, and H. Wester-
hoff, Faraday Discuss. 120, 261 (2002).
[12] Manfred G. Kitzbichler, Marie L. Smith, Søren R. Christensen, Ed Bullmore,
PLoS Compute. Biol. 5, issue 3 (2010).
[13] Hiroyasu Ando, Hiromichi Suetani, Jürgen Kurths, and Kazuyuki Aihara,
Phys. Rev. E 86, 016205 (2012).
[14] M. Botcharova, S. F. Farmer, and L. Berthouze, Phys. Rev. E 86, 051920
(2012).
[15] N. Wiener, Nonlinear Problems In Random Theory MIT Press, Cambridge,
MA (1958).
[16] N. Wiener, Cybernetics, 2nd Edition, MIT Press, Cambridge, MA (1961).
[17] A.T. Winfree, J. Theoret. Biol. 16 15 (1967).
[18] Y. Kuramoto, in: H. Arakai (Ed.), International Symposium on Mathematical
Problems in Theoretical Physics, Lecture Notes in Physics, Vol. 39 p.420,
Springer, New York (1975).
[19] Y. Kuramoto, Progr. Theoret. Phys. Suppl. 79, 223 (1984).
[20] H. Sakaguchi, Y. Kuramoto, Progr. Theoret. Phys. 76, 576 (1986).
[21] Y. Kuramoto, I. Nishikawa, J. Statist. Phys. 49,569 (1987).
[22] H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, Prog. Theor. Phys. 77, 1005
(1987).
[23] Y. Kuramoto, I. Nishikawa, in: H. Takayama (Ed.), Cooperative Dynamics
in Complex Physical Systems, Springer, Berlin (1989).
[24] Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380
(2002).
[25] Y. Kuramoto, in Nonlinear Dynamics and Chaos: Where Do We Go from
Here?, edited by S.J. Hogan, A.R. Champneys, B. Krauskopf, M. di Bernardo,
R.E. Wilson, H.M. Osinga, and M.E. Homer (Institute of Physics, Bristol,
U.K., 2003), p. 209.
[26] S.I. Shima and Y. Kuramoto, Phys. Rev. E 69, 036213 (2004).
[27] Hiroaki Daido, Physica D 91, 24 (1996).
[28] Steven H. Strogatz, Physica D 143, 1-12 (2000).
[29] J.A. Acebró n, L.L. Bonilla, C.J.P. Vicente, F. Ritort and R. Spigler, Rev.
Mod. Phys. 77, 137 (2005).
[30] S. Gupta,A. Campa and S. Ruffo, arXiv:1403.2083 (2014).
[31] E. Ott and T.M. Antonsen, Chaos, 18, 037113 (2008).
[32] E. Ott and T.M. Antonsen, Chaos 19, 023117 (2009).
[33] S.H. Strogatz and R.E. Mirollo, J. Phys. A 21, L699 (1988); Physica D 31,
143 (1988).
[34] H. Daido, Phys. Rev. Lett. 61, 231 (1988).
[35] H. Hong, H. Park, and M. Y. Choi, Phys. Rev. E 72, 036217 (2005).
[36] H. Sakaguchi Prog, Theor. Phys. 79, 39 (1988)
[37] S.H. Strogatz and R.E. Mirollo, J. Stat. Phys. 63, 613 (1991)
[38] J.A. Acebró n and R. Spigler Phys. Rev. Lett. 81, 2229 (1998).
[39] H. Hong, M.Y. Choi,B-G. Yoonk,K. Park and K-S. Soh, J. Phys. A: Math.
Gen. 32, L9 (1999).
[40] J.A. Acebró n, L.L. Bonilla and R. Spigler, Phys. Rev. E 62, 3437 (2000).
[41] D.M. Abrams and S.H. Strogatz, Phys. Rev. Let. 93, 17 (2004).
[42] C.R. Laing, Physica D 238, 1569-1588 (2009).
[43] H. Daido, Prog. Theor. Phys. 81, 727 (1989).
[44] M.J. Lee, S.D. Yi, and B.J. Kim, Phys. Rev. Let. 112, 074102 (2014).
[45] J.L. Rogers, and L.T. Wille. Phys. Rev. E 54, R2193 (1996)
[46] Máté Maródi, Franceso d’Ovidio, and Tamás Visek. Phys. Rev. E 66, 011109
(2002)
[47] D. Chowdhury and M.C. Cross Phys. Rev. E 82, 016205 (2010)
[48] M.S.O. Massunaga, M. Bahiana, Physica D 168, 139 (2002).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *