帳號:guest(3.21.159.11)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝子祺
作者(外文):Sie, Zih Ci
論文名稱(中文):非共振激發之雷德堡費米氣體中的量子相變
論文名稱(外文):Quantum Phase Transition of Rydberg-Dressed Fermi Gas
指導教授(中文):王道維
指導教授(外文):Wang, Daw Wei
口試委員(中文):牟中瑜
郭西川
口試委員(外文):Mou, Chung Yu
Gou, Shih Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:102022506
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:35
中文關鍵詞:雷德堡原子
外文關鍵詞:Rydberg atom
相關次數:
  • 推薦推薦:0
  • 點閱點閱:222
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
非共振激發之雷德堡量子氣體為新穎且具有前景的極冷原子系統,在此系統中,原子間的交互作用力具有高度的可調控性以及長的同調時間。在這篇論文中,我們研究了一個在三維自由空間下具有排斥交互作用力的非共振激發之雷德堡費米氣體。雷德堡交互作用力因為阻塞效應 (blockade effect) 而帶有一個特徵長度R_c (稱為阻塞長度),以至於在動量空間下,存在負的極小值。因為這個特徵,在隨機相位近似 (random phase approximation) 中的計算指出集體激發會在強交互作用力或長阻塞長度時軟化 (soften),暗示了一個由費米液體到一個未知態的量子相變的存在。藉由猜測此未知態為一個密度波態,我們使用了平均場理論來研究系統的基態性質 (包括相圖、臨界溫度、密度波的型態)。結果指出系統存在一個由費米液體到體心立方堆積之密度波的一階相變。更進一步地,我們探討了Pomeranchuk不穩定 (Pomeranchuk instability) 是否存在於我們所研究的系統中,使用了以下三種方法:數值計算系統總能量 (有限大小之費米面形變)、金茲堡-朗道展開 (Ginzburg-Landau expansion) 以及 Pomeranchuk不穩定條件 (後兩者為無限小之費米面形變)。三種方法皆指出在此系統中不會有Pomeranchuk不穩定發生。我們發現了一種新的密度波態,此種密度波態是由阻塞效應引入的特徵長度所造成,不同於維格納晶體 (特徵長度為粒子密度) 或是固態中的密度波態 (特徵長度由晶格結構給出)。
Rydberg-dressed quantum gas is a promising ultracold atom system, which provides highly controllable interaction and long coherence time. Here we study a Rydberg-Dressed Fermi Gas with repulsive interaction at three-dimensional free space. The interaction between Rydberg-dressed atoms has a length scale Rc introduced by the blockade eff ect, which features a notable negative minimum in momentum space. As such, calculation within random phase approximation shows
that a collective mode softens in strong interaction or long blockade radius regime, indicating a quantum phase transition from a Fermi liquid to an unknown phase. By the guess that this phase is a density wave phase, we develop a mean fi eld theory to study the ground state properties (the phase diagram, critical temperature and the form of density modulation) of the system. The result shows there is a first order phase transition from the Fermi liquid phase to a rippled density wave phase with body centered cubic (BCC) structure. Furthermore, we investigate Pomeranchuk instability (PI) of our system with three diff erent methods: numerical computation of energy (fi nite distortion of Fermi surface), Ginzberg-Landau expansion and the PI condition (both are small distortion of Fermi surface). These three results consistently show that there is no PI in the system. Our finding adds an new member to the density wave phase. This new phase has lattice constant introduced by the blockade eff ect, which is diff erent from the Wigner crystal (length scale given by particle density) or charge density wave in solid states (length scale given by the underlying crystal structure).
1 Introduction 3
2 Preliminary analysis of the system 5
2.1 Model for Rydberg-dressed Fermi gas . . . . . . . . . . . . . . . . . 5
2.2 Softening of the collective mode . . . . . . . . . . . . . . . . . . . . 9
3 Mean eld theory: ansatz with lattice order 14
3.1 The mean eld method . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 1D case: illustration of the concept and the numerical method . . . 17
3.3 3D case: rippled density wave . . . . . . . . . . . . . . . . . . . . . 18
4 Pomeranchuk Instability 24
4.1 Introduction to Pomeranchuk instability . . . . . . . . . . . . . . . 24
4.2 Microscopic description: a mean eld approach for PI . . . . . . . . 26
5 Summary and discussion 31
[1] J. Quintanilla and A. J. Scho eld. Pomeranchuk and topological fermi surface
instabilities from central interactions. Phys. Rev. B, 74:115126, Sep 2006.
[2] N. Bohr. On the constitution of atoms and molecules. Philos. Mag., 26:1,
1913.
[3] Qi-Yu Liang Sebastian Ho erberth Alexey V. Gorshkov Thomas Pohl Mikhail
D. Lukin Vladan Vuleti Thibault Peyronel, Ofer Firstenberg. Quantum
nonlinear optics with single photons enabled by strongly interacting atoms.
Nature, 488:57{60, 2012.
[4] Anita Gaj David Peter Hans Peter Bchler Robert Lw Sebastian Ho erberth
Tilman Pfau Jonathan B. Balewski, Alexander T. Krupp. Coupling a single
electron to a boseeinstein condensate. Nature, 502:664{667, October 2013.
[5] M. Sa man and K. Mlmer. Scaling the neutral-atom rydberg gate quantum
computer by collective encoding in holmium atoms. Phys. Rev. A, 78:012336,
Jul 2008.
[6] Ditte Mller, Lars Bojer Madsen, and Klaus Mlmer. Quantum gates and
multiparticle entanglement by rydberg excitation blockade and adiabatic passage.
Phys. Rev. Lett., 100:170504, Apr 2008.
[7] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. C^ote, and M. D. Lukin.
Fast quantum gates for neutral atoms. Phys. Rev. Lett., 85:2208{2211, Sep
2000.
[8] N. Henkel, R. Nath, and T. Pohl. Three-dimensional roton excitations and
supersolid formation in rydberg-excited bose-einstein condensates. Phys. Rev.
Lett., 104:195302, May 2010.
[9] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller. Strongly
correlated gases of rydberg-dressed atoms: Quantum and classical dynamics.
Phys. Rev. Lett., 104:223002, Jun 2010.
[10] Jens Honer, Hendrik Weimer, Tilman Pfau, and Hans Peter Buchler. Collective
many-body interaction in rydberg dressed atoms. Phys. Rev. Lett.,
105:160404, Oct 2010.
[11] T. Henage L. Isenhower D. D. Yavuz T. G. Walker M. Sa man E. Urban,
T. A. Johnson. Observation of rydberg blockade between two atoms. Nature
Phys., 5:110{114, 2009.
[12] Tatjana Wilk Amodsen Chotia Matthieu Viteau Daniel Comparat Pierre Pillet
Antoine Browaeys & Philippe Grangier Alpha Gatan, Yevhen Miroshnychenko.
Observation of collective excitation of two individual atoms in the
rydberg blockade regime. Nature Phys., 5:115{118, 2009.
[13] Hendrik Weimer, Robert Low, Tilman Pfau, and Hans Peter Buchler. Quantum
critical behavior in strongly interacting rydberg gases. Phys. Rev. Lett.,
101:250601, Dec 2008.
[14] F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and G. Pupillo. Supersolid
droplet crystal in a dipole-blockaded gas. Phys. Rev. Lett., 105:135301,
Sep 2010.
[15] N. Henkel, F. Cinti, P. Jain, G. Pupillo, and T. Pohl. Supersolid vortex
crystals in rydberg-dressed bose-einstein condensates. Phys. Rev. Lett.,
108:265301, Jun 2012.
[16] F. Maucher, N. Henkel, M. Sa man, W. Krolikowski, S. Skupin, and T. Pohl.
Rydberg-induced solitons: Three-dimensional self-trapping of matter waves.
Phys. Rev. Lett., 106:170401, Apr 2011.
[17] Bo Xiong, H. H. Jen, and Daw-Wei Wang. Topological super
uid by blockade
e ects in a rydberg-dressed fermi gas. Phys. Rev. A, 90:013631, Jul 2014.
[18] John Dirk Walecka Alexander L. Fetter. Quantum Theory of Many-particle
Systems. Dover, 1971.
[19] I. I. Pomeranchuk. On the stability of a fermi liquid. Sov. Phys. JETP, 8:8:
361362, 1959.
[20] Chungwei Lin, Erhai Zhao, and W. Vincent Liu. Liquid crystal phases of
ultracold dipolar fermions on a lattice. Phys. Rev. B, 81:045115, Jan 2010.
[21] Philippe Nozieres. Theory of interacting Fermi systems. 1964.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *