帳號:guest(3.12.150.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭達昌
作者(外文):Kuo, Da Chang
論文名稱(中文):具一般非線性函數 Dirichlet-Neumann 邊界問題之分枝曲線分類與演化及其應用
論文名稱(外文):Classification and evolution of bifurcation curves for a Dirichlet-Neumann boundary value problem with general nonlinearity and its application
指導教授(中文):王信華
指導教授(外文):Wang, Shin Hwa
口試委員(中文):洪國智
葉宗鑫
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:102021615
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:26
中文關鍵詞:Dirichlet-Neumann邊界值問題分枝曲線的演化分枝曲線的分類分枝曲線時間圖
外文關鍵詞:Dirichlet-Neumann boundary value problemevolution of bifurcation curveclassification of bifurcation curvebifurcation curvetime mapgeneral nonlinearity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:98
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
我們研究在Dirichlet-Neumann邊界條件下的正解分枝曲線的分類與演化,u''(x)+λf(u)=0, 0<x<1, u(0)=0, u'(1)=-c<0,這裡的λ>0,是分枝參數;而c>0,是演化參數。我們主要要證明函數f在適當的假設下,我們可以找到一個c₁>0,使得在(λ,‖u‖∞)平面上,我們有以下兩個性質。
(1)當0<c<c₁,分枝曲線為S型,而且在某些區間λ,會存在至少三個正解。
(2)當c≥c₁,分枝曲線為C型,而且在某些區間λ,會存在至少兩個正解。
我們的研究結果可以應用在一維的perturbed Gelfand equation,函數f(u)=exp((au)/(a+u))在a≥4.37。
We study the classification and evolution of bifurcation curves of positive solutions for the Dirichlet-Neumann boundary value problem u''(x)+λf(u)=0, 0<x<1, u(0)=0, u'(1)=-c<0, where λ>0 is a bifurcation parameter and c>0 is an evolution parameter. We mainly prove that, under some suitable assumptions on f, there exists c₁>0, such that, on the (λ,‖u‖∞)-plane, (i) when 0<c<c₁, the bifurcation curve is S-shaped and the problem has at least three positive solutions for some range of positive λ; (ii) when c≥c₁, the bifurcation curve is ⊂-shaped and the problem has at least two positive solutions for some range of positive λ. Our results can be applied to the one-dimensional perturbed Gelfand equation with f(u)=exp((au)/(a+u)) for a≥4.37.
1.Introduction ........................................2
2.Main results ........................................7
3.Lemmas ..............................................9
4.Proofs of the main results .........................19
5.References .........................................25
Brown-Ibrahim-Shivaji : K.J. Brown, M.M.A. Ibrahim, R. Shivaji, S-shaped bifurcation curves, Nonlinear Anal. 5 (1981) 475--486.

Drame-Costa : A.K. Drame, D.G. Costa, On positive solutions of one-dimensional semipositone equations with nonlinear boundary conditions, Appl. Math. Lett. 25 (2012) 2411--2416.

Goddard-Shivaji-Lee : J. Goddard II, R. Shivaji, E.K. Lee, A double S-shaped bifurcation curve for a reaction-diffusion model with nonlinear boundary conditions, Bound. Value Probl. 2010, Art. ID 357542, 23 pages.

Gordon-Ko-Shivaji : P.V. Gordon, E. Ko, R. Shivaji, Multiplicity and uniqueness of positive solutions for elliptic equations with nonlinear boundary conditions arising in a theory of thermal explosion, Nonlinear Anal.: Real World Appl. 15 (2014) 51--57.

Huang-Wang1 : S.-Y. Huang, S.-H. Wang, Proof of a conjecture for the one-dimensional perturbed Gelfand problem from combustion theory, Arch. Rational Mech. Anal. (2016) 1--57. (DOI) 10.1007/s00205-016-1011-1

Hung-Wang1 : K.-C. Hung, S.-H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differential Equations 251 (2011) 223--237.

Hung-Wang-Yu : K.-C. Hung, S.-H. Wang, C.-H. Yu, Existence of a double S-shaped bifurcation curve with six positive solutions for a combustion problem, J. Math. Anal. Appl. 392 (2012) 40--54.

Korman-Li : P. Korman, Y. Li, On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math. Soc. 127 (1999) 1011--1020.

Kuo-Liang-Wang : D.-C. Kuo, S.-H. Wang, Y.-H. Liang, Detail proofs of some results in the article: Classification and evolution of bifurcation curves for a Dirichlet-Neumann boundary value problem with general nonlinearity and its application, Available from: http://mx.nthu.edu.tw/~yhliang/PfEvoBifGeneralMixBC.pdf.

Laetsch : T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J. 20 (1970) 1--13.

Liang-Wang : Y.-H. Liang, S.-H. Wang, Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions, J. Differential Equations 260 (2016) 8358--8387.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *