|
Brown-Ibrahim-Shivaji : K.J. Brown, M.M.A. Ibrahim, R. Shivaji, S-shaped bifurcation curves, Nonlinear Anal. 5 (1981) 475--486.
Drame-Costa : A.K. Drame, D.G. Costa, On positive solutions of one-dimensional semipositone equations with nonlinear boundary conditions, Appl. Math. Lett. 25 (2012) 2411--2416.
Goddard-Shivaji-Lee : J. Goddard II, R. Shivaji, E.K. Lee, A double S-shaped bifurcation curve for a reaction-diffusion model with nonlinear boundary conditions, Bound. Value Probl. 2010, Art. ID 357542, 23 pages.
Gordon-Ko-Shivaji : P.V. Gordon, E. Ko, R. Shivaji, Multiplicity and uniqueness of positive solutions for elliptic equations with nonlinear boundary conditions arising in a theory of thermal explosion, Nonlinear Anal.: Real World Appl. 15 (2014) 51--57.
Huang-Wang1 : S.-Y. Huang, S.-H. Wang, Proof of a conjecture for the one-dimensional perturbed Gelfand problem from combustion theory, Arch. Rational Mech. Anal. (2016) 1--57. (DOI) 10.1007/s00205-016-1011-1
Hung-Wang1 : K.-C. Hung, S.-H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differential Equations 251 (2011) 223--237.
Hung-Wang-Yu : K.-C. Hung, S.-H. Wang, C.-H. Yu, Existence of a double S-shaped bifurcation curve with six positive solutions for a combustion problem, J. Math. Anal. Appl. 392 (2012) 40--54.
Korman-Li : P. Korman, Y. Li, On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math. Soc. 127 (1999) 1011--1020.
Kuo-Liang-Wang : D.-C. Kuo, S.-H. Wang, Y.-H. Liang, Detail proofs of some results in the article: Classification and evolution of bifurcation curves for a Dirichlet-Neumann boundary value problem with general nonlinearity and its application, Available from: http://mx.nthu.edu.tw/~yhliang/PfEvoBifGeneralMixBC.pdf.
Laetsch : T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J. 20 (1970) 1--13.
Liang-Wang : Y.-H. Liang, S.-H. Wang, Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions, J. Differential Equations 260 (2016) 8358--8387. |