帳號:guest(18.220.35.83)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王韡竹
作者(外文):Wang, Wei Zhu
論文名稱(中文):虧格為壹的封閉曲面上的離散里奇流之研究
論文名稱(外文):Discrete Ricci Flows of a Closed Surface with Genus One
指導教授(中文):何南國
林文偉
指導教授(外文):Ho, Nan Kuo
Lin, Wen Wei
口試委員(中文):張書銘
何南國
黃聰明
林文偉
口試委員(外文):Chang, Shu Ming
Ho, Nan Kuo
Huang, Tsung Ming
Lin, Wen Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:102021608
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:62
中文關鍵詞:里奇流保角映射圓堆砌
外文關鍵詞:Ricci flowconformal mappingcircle packing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:341
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  顧顯峰教授、羅鋒教授、丘成桐院士\ldots 等,在 2007年時提出了一種里奇流的離散方法並用這種方法找到相對應的保角映射。我們將在這篇論文中,說明並實作這種方法將虧格為 1 的封閉曲面保角地嵌入二維平面、里奇流何從連續到離散、和保角映射的關係。在算法的部份,分兩方面進行。第一部分,利用牛頓法解離散里奇流組成的非線性系統。並由之前理論的基礎知道里奇流會有解,所以更進一步寫成時間獨立的方程組藉由牛頓法找解。牛頓法在收斂的表現相當傑出。第二部份,實作丘院士及顧教授書中的一種計算上更有效率的方法,找到嵌入$\mathbb{R}^2$後的座標位置。而整套里奇流過程中,疊代的方式找保角的座標雖然是很直覺的,卻沒有效率。所以這方法找座標,是大幅度的縮減整體的時間花費。接著,我們用了兩個方法確認保角性。最後,我們提出使用里奇流這套方法找保角映射的一些經驗與建議。
Gu, Luo, and Yau etc. provided a process to discretize the Ricci flow and find the conformal mapping in 2007. In this thesis, we introduce the method and implement its algorithms to embed a closed genus-1 surface (in 3-D) into the Euclidean plane conformally. The algorithm is composed of two parts. First, we find the solution of the Ricci flow with Newton's method. By the convergence theory, it is known that there is a solution of the Ricci equation. We can write the equation as a time-independent equation system which solved by Newton's method. Newton's method is excellent on the rate of convergence. Second, we implement an efficiency way by Yau and Gu to find the position of vertices on $\mathbb{R}^2$ since the iterative method is intuitive but inefficient. Hence, the efficient method brings more benefits. Next, we use two methods to estimate the conformal errors. Finally, we provide some advices about the whole procedure to find the conformal mapping.
1 Motivation and Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Gauss Curvature and Gauss-Bonnet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Ricci Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Ricci Flow Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Discrete Gaussian Curvature and Ricci Flow . . . . . . . . . . . . . . . . . . . . 8
3.2.1 Exponential Convergence Rate . . . . . . . . . . . . . . . . . . . 9
3.2.2 Ricci Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Solve the Discrete Ricci Flow with Newton’s Method . . . . . . . 13
3.2.4 Newton’s Method to Solve K(u) = 0 . . . . . . . . . . . . . . . . 17
3.3 Embedded in the Euclidean Plane . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Planar Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Least Vertices Energy . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Comparison of Two Methods . . . . . . . . . . . . . . . . . . . . 26
4 Conformal Error Analysis . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 Conformal Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 The Discrete Method of the Conformal Factor . . . . . . . . . . . . . . . 28
4.3 Conformal map and Holomorphism . . . . . . . . . . . . . . . . . . . . . 28
4.4 The Discrete Method of the Holomorphic Map . . . . . . . . . . . . . . . 29
5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 Discrete Ricci Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Embedded in an Euclidean Plane . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Conformal Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 37
A Basic Geometric Definitions and Theorems . . . . . . . . . . . . . . . . . . . . . . . 40
B Riemannian Geometry . . . . . . . . . . . . . . . . . . . . . . . 42
C Models: Meshes in R 3 , Embedded in R 2 , and Conformal Error Results . . . . . 43
[1] D. Mumford E. Sharon. 2d-shape analysis using conformal mapping. Computer Vision and Pattern Recognition, 2004. Proceedings of the 2004 IEEE Computer Society Conference on Date 27 June-2 July 2004, 2, 2004.
[2] Xianfeng Gu, Yalin Wang, Tony F. Chan, Paul M. Thompson, and Shing-Tung Yau. Genus zero surface conformal mapping and its application to brain surface mapping. IEEE TRANSACTIONS ON MEDICAL IMAGING, 23, 2004.
[3] William P. Thurston. The Geometry and Topology of 3-manifolds. Princeton University Press, 1981.
[4] Bennett Chow and Feng Luo. Combinatorial ricci flows on surfaces. Journal of Differential Geometry, 63, 2003.
[5] Miao Jin, Junho Kim, Feng Luo, and Xianfeng Gu. Discrete surface ricci flow: Theory and applications. 4647.
[6] Yong-Liang Yang, Ren Guo, Feng Luo, Shi-Min Hu, and Xianfeng Gu. Generalized discrete ricci flow. Computer Graphics Forum, Special issue of Pacific Graphics, 28, 2009.
[7] Xianfeng Gu and Shing-Tung Yau. Computational Conformal Geometry. Advanced Lectures in Mathematics. International Press of Boston, 2008.
[8] Wei Zeng and Xianfeng David Gu. Ricci Flow for Shape Analysis and Surface Registration Theories, Algorithms and Applications. Springer, 1 edition, 2013.
[9] Manfredo P. Do Carmo. Differential Geometry of Curves and Surfaces. Pearson, 1 edition, 1976.
[10] Jürgen Jost. Riemannian Geometry and Geometric Analysis. Springer, 6 edition, 2011.
[11] Richard S. Hamilton. Three-manifolds with positive ricci curvature. Journal of Differential Geometry, 17, 1982.
[12] James Isenberg, Rafe Mazzeo, and Natasa Sesum. Ricci Flow in Two Dimensions, volume 20 of Advanced Lectures in Mathematics. International Press of Boston.
[13] Richard S. Hamilton. The ricci flow on surfaces. Contemporary Mathematics, 71, 1988.
[14] Miao Jin, Junho Kim, Feng Luo, and Xianfeng Gu. Discrete surface ricci flow. IEEE Transactions on Visualization and Computer Graphics, 14, 2008.
[15] Bennett Chow and Dan Knopf. The Ricci Flow: An Introduction. Mathematical Surveys and Monographs. American Mathematical Society, 2004.
[16] Albert Fathi, François Laudenbach, and Valentin Poénaru. Thurston’s work on surfaces. Princeton University Press, 2012.
[17] Ren Guo. Local rigidity of inversive distance circle packing. Transactions of the American Mathematical Society, 2009.
[18] M.M. Postnikov. Geometry VI: Riemannian Geometry, volume 91 of Encyclopaedia of Mathematical Sciences. Springer, 2001.
[19] Mohammed Mostefa Mesmoudi, Leila De Floriani, and Paola Magillo. Discrete curvature estimation methods for triangulated surfaces. Lecture Notes in Computer Science, 7346, 2012.
[20] Roger A. Horn and Charles R. Johnso. Matrix Analysis. Cambridge University Press, 2 edition, 2012.
[21] Tony F. Chan. Deflated decomposition of solutions of nearly singular systems. Society for Industrial and Applied Mathematics, 21, 1984.
[22] A. Sheffer and E. De Sturler. Surface parameterization for meshing by triangulation flattening. 9th International Meshing Roundtable, 2000.
[23] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov. Abf++: Fast and robust angle based flattening. ACM Transactions on Graphics, 24, 2005.
[24] Anyi Bu. Conformality of planar parameterization for single boundary triangulated surface mesh. Master’s thesis, National Central University, 2013.
[25] Shuju Huang. Matlab implementation for conformal parameterizations with free boundary. Master’s thesis, National Central University, 2013.
[26] Elias M. Stein and Rami Shakarchi. Complex Analysis, volume 2 of Princeton Lectures in Analysis. Princeton University Press, 1 edition, 2003.
[27] Manfredo P. Do Carmo. Riemannian Geometry. Birkhäuser, 1 edition, 1992.
(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *