帳號:guest(13.59.173.75)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林恊弘
作者(外文):Lin, Hsieh Hung
論文名稱(中文):單晶3C碳化矽於離子輻照下隨溫度變化之膨脹效應
論文名稱(外文):The Swelling Effect of Ion Irradiated Single Crystal 3C-SiC at Various Temperature
指導教授(中文):開執中
陳紹文
指導教授(外文):Kai, Ji Jung
Chen, Shao Wen
口試委員(中文):黃爾文
胡琪怡
口試委員(外文):Huang, E Wen
Hu, Alice
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:102013508
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:116
中文關鍵詞:碳化矽離子輻照膨脹效應微結構變化氦氣泡
外文關鍵詞:silicon carbideion irradiationswelling effectmicrostructural changehelium bubble
相關次數:
  • 推薦推薦:0
  • 點閱點閱:140
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
碳化矽因具有高熔點、高溫時仍具有良好的機械性質、化學活性低及中子吸收截面小等優點,是未來備受矚目的核能結構材料之一,本實驗結合TEM及XRD分析離子輻照後的單晶3C碳化矽其微結構變化與膨脹效應,本論文中的實驗分為兩部分,一為單晶3C碳化矽於低溫輻照下所產生的點缺陷晶格膨脹效應,另一部分為高溫輻照下所產生之空孔之膨脹,而實驗分為三部分,簡述如下:
  氦離子單射束實驗使用175、225及275keV的He+於距離表面0.6至0.8μm處形成一輻照劑量為15000或45000 appm的區域,並於800、1000、1200℃進行實驗。利用TEM觀測此區域發現氦氣泡在800℃時率先於材料中原有的疊差處生成,當溫度到達1000℃,除疊差處外於其附近的區域亦開始出現氦氣泡,其略大於800℃的尺寸,且密度明顯增加。當溫度高達1200℃時,氣泡的分部範圍遍佈整個佈植區,且氣泡的尺寸大幅增加,但密度下降。比較45000 appm之結果可發現輻照劑量增加對於氦氣泡的生成機制並無明顯影響,但氣泡密度及大小會隨劑量增加而增加。且經由理論計算得知,在15000appm的實驗中,即使於1200℃的條件下,仍有高達34%的氦原子未進入空缺中形成氦氣泡,而在1000及800℃的條件下有更高比例的氦原子未貢獻入氦氣泡中,此現象推測與打入之氦原子的量大於輻照所產生的缺陷量,因而無法使氦原子完全進入空缺團中形成氦氣泡。
  矽離子單射束使用2.9 MeV的Si2+離子於距離表面0.6至0.8μm處形成一平均輻照劑量為20 dpa之區域,於40及200℃進行輻照,佈植後發現40℃之樣品有非晶化的現象且經由電子顯微鏡的量測可知若假設為等向性之體膨脹,其體膨脹率為7.7%。而200℃的試片則無非晶化之現象,並利用同步XRD進行各晶面之徑向掃描,量測其膨脹後晶面間距的變化,發現其因薄膜材料的基板箝制效應而為非等向性之膨脹,其體膨脹量僅1.52%。若不考慮基板之效應則應為等向性膨脹,其值為4.04%。此外,於XRD[0 0 2]的徑向掃描結果中亦有觀察到因輻照所產生之沿特定方向排列之缺陷,如C+-C<100>的啞鈴型缺陷(dumbbell)所造成的繞射峰偏移及因輻照缺陷團聚所造成的漫散射駝峰。此外,亦有根據文獻進行理論計算,推出單一一顆缺陷所造成的晶格膨脹量。
  氦、矽離子雙射束實驗於佈植區的平均劑量為100 appm / 1 dpa,氦離子的能量為201、467、737及1000keV,矽離子能量為5.1MeV,實驗溫度為1000、1200、1350℃,實驗完成後亦利用TEM進行觀察,統計氣泡平均直徑與密度並計算氦氣泡膨脹量,與氦、矽單射束的數據進行統整與比較。由TEM統計結果可發現於相同劑量下,氣泡密度與直徑有隨溫度上升減小與增加,而當劑量增加則密度與尺寸都會略微增加。此外,根據TEM照片可發現於雙射束實驗的條件下,氣泡幾乎是均勻分佈於佈植區,並沒有明顯沿著疊差生成的趨勢,此與氦單射束之結果有很大的不同。最後,利用TEM照片的統計結果計算出單晶3C碳化矽的膨脹量並與其他文獻進行比較,可發現雖然膨脹量略低於前人之結果,但膨脹量隨溫度之變化趨勢是相同的。
Silicon carbide (SiC) is one of the attractive nuclear structure materials in the future, because it has many outstanding properties like high melting point, good mechanical property at high temperature, small cross-section of absorbing neutron, and so on. In this thesis, using transmission electron microscopy (TEM) and synchrotron radiation based X ray diffraction (XRD) to discuss the microstructure change and swelling effect of ion implanted single crystal 3C-SiC. The material is the thin film CVD single crystal 3C-SiC with 1.1μm thickness. The experiment is seperated to 3 parts. The details are as following:
The first part is the single beam irradiation with helium ion (He+). The implanted temperature is 800, 1000 and 1200℃. Using 175, 225 and 275 keV of He+ form a region that has 15000 or 45000 appmHe. This region is at 0.6 - 0.8μm from the sample surface. In the experiment of 15000 appm, the He bubbles will form at the stacking fault region at 800℃. when temperature up to 1000℃, bubbles appear not only at the stacking fault region but also at its near region. The bubble density is higher than the bubble density of 800℃. The bubbles appear in everywhere and the bubble size is increasing obviously at 1200℃. When dose up to 45000 appm, the bubble size and density are increasing, but the bubble appeared region is not affected by dose at the same implanted temperature. Besides, there is only 66% of implanted He atoms diffuse into the bubble at 15000 appm, 1200℃. When the dose increase, the percentage will also increase.However, the percentage of helium atoms diffuse into bubble does not reach 100% at 45000 appm, 1200℃. It suggest that the amount of defects caused by ion irradiation are less than implanted helium ion.
In the second part, the single beam ion implantation up to 20 dpa with 2.9 MeV Si2+ at 40 and 200℃. The sample become amrophous at 40℃, but it is still crystalline at 200℃. The swelling is 7.7% at 40℃. Besides, using synchrotron radiation based XRD radial scanning to get the interplanar information of 200℃. The results find that the swelling is anisotropic, owing to the limitation of Si substrate. Besides, humps are found in Si(002) radial scan result, it may caused by the defect cluster. Also, the swelling which caused by each type of point defect was calculated.
The last part is the dual beam implantation with 201, 467 keV He+ and 5.1MeV Si2+at 1000 - 1350℃. The average dose in implanted area is about 100 appmHe/ 1 dpa. In the statistic, the bubble density decrease, but the bubble size increase as temperature increasing. The increasing dose will cause bubble size and density become lager and denser. Besides, the bubble distribute in the irradiated region homogeneously. This result is defferent from the helium single beam obviously. At the last, compare the experimental statistics with many lectures.
摘要 i
Abstract iii
致謝 v
表目錄 ix
圖目錄 x
符號、縮寫說明 xiv
第一章 研究動機 1
第二章 文獻回顧 3
2.1碳化矽的材料特性 3
2.2碳化矽材料的製備 4
2.2.1單晶碳化矽 4
2.2.2碳化矽/碳化矽複合材料 5
2.2.2.1碳化矽纖維 5
2.2.2.2碳化矽基材 6
2.2.2.3界面層 7
2.2.3全纖維碳化矽複合材料 8
2.3碳化矽於核能材料的應用 9
2.3.1 輕水式反應器 9
2.3.2 高溫氣冷式反應器 10
2.3.3 其他先進反應器 10
2.3.4 核融合反應器 11
2.4碳化矽材料的輻射效應 12
2.4.1輻照後之微結構變化 12
2.4.2氦氣泡 13
2.4.3 膨脹效應 15
第三章 實驗原理與方法 36
3.1 SRIM 模擬程式計算 36
3.2離子佈植輻照系統 37
3.2.1 加速器系統 37
3.2.2 入射粒子與靶材交互作用 38
3.3 實驗流程與條件 39
3.4電子顯微鏡分析 39
3.4.1 穿透式電子顯微鏡(TEM)試片製備 39
3.4.2穿透式電子顯微鏡原理 40
3.4.2.1電子束與物質之交互作用 41
3.4.2.2 電子槍 42
3.4.2.3 電子能量損失能譜儀(EELS) 43
3.4.3 掃描穿透式電子顯微鏡(STEM) 45
3.5 MATLAB模擬計算 46
3.6 同步X光繞射分析 46
3.6.1 X光繞射分析簡介 46
3.6.2 同步輻射X光繞射實驗 48
第四章 實驗結果與討論 62
4.1輻照前材料分析 62
4.2 電子顯微鏡分析 62
4.2.1 氦離子輻照實驗 62
4.2.1.1 15000appm之結果 62
4.2.1.2 45000appm之結果 64
4.2.2 矽離子輻照實驗 64
4.2.3 氦、矽離子雙射束輻照實驗 65
4.3熱擴散模擬計算 67
4.4 同步輻射X光繞射分析 69
4.5 膨脹分析 69
4.5.1 點缺陷膨脹分析 69
4.5.2 空孔膨脹分析 71
第五章 結論 104
第六章 未來研究方向 107
參考文獻 108
[1]陳秋榮,物理雙月刊,卅卷四期,台灣,中華民國九十七年,p.444
[2] M. Mehregany, C.A. Zorman, "SiC MEMS: opportunities and challenges for applications in harsh environments", Thin Solid Films, pp. 518-524, 1999
[3] 林博文,碳化矽及其他碳化物陶瓷技術手冊(下)修訂版,第745-776頁,台灣,中華民國八十八年
[4] J. Eid, I.G. Galben, “3C-SiC growth on Si substrates via CVD: An introduction”, NOVASiC, 2008
[5] S. Mourdikoudis, K. Simeonidis, “Advanced characterization of 3C-SiC epitaxial layer by TEM and XRD pole figure”, NOVASiC, 2008
[6]林彥儒,「輻照引致單晶3C碳化矽材料的微結構變化與膨脹效應之研究」,國立清華大學先進光源科技學位學程,碩士論文,中華民國一O三年
[7] K.K. Chawla, Composite Materials, 2nd edition, Springer, 1998
[8] L.L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, M. Sawan, “Silicon carbide composites as fusion power reactor structural materials”, Journal of Nuclear Materials, vol. 417, pp. 330–339, 2011
[9] G. Newsome, “Evaluation of neutron irradiated silicon carbide and silicon carbide composites”, Journal of Nuclear Materials, vol. 371, pp. 76–89, 2007
[10] M. Takeda, A. Urano, J. Sakamoto, Y. Imai, “Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S”, Journal of Nuclear Materials, vol. 258-263, pp. 1594-1599, 1998
[11] H. Araki, H. Suzuki, W. Yang, S. Sato, T. Noda, “Effect of high temperature heat treatment in vacuum on microstructure and bending properties of SiCf/SiC composites prepared by CVI”, Journal of Nuclear Materials, vol. 258-263, pp. 1540-1545, 1998
[12] T. Ishikawa, “High-strength alkali-resistant sintered SiC fibre stable to 2200℃”, Nature, vol. 391, 6669, pp. 773, 1998
[13] T.M. Besmann, B.W. Sheldon, R.A. Lowden, D. P. Stinton, “Vapor-Phase Fabrication and Properties of Continuous-Filament Ceramic Composite”, Science, vol. 253, 1991
[14] K. Shimoda, A. Kohyama, T. Hinoki, “High mechanical performance SiC/SiC composites by NITE process with tailoring of appropriate fabrication temperature to fiber volume fraction”, Composites Science and Technology, vol. 69, pp. 1623–1628, 2009
[15] W. Zhang, T. Hiniki, Y. Katoh, A. Kohyama, T. Noda, T. Muroga, J. Yu, “Crack initiation and growth characteristics in SiC/SiC under indentation test”, Journal of Nuclear Materials, vol. 258-263 , pp. 1577-1581, 1998
[16] T. Hinoki, W. Zhang, A. Kohyama, S. Sato, T. Noda, “Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique”, Journal of Nuclear Materials, vol. 258-263, pp. 1567-1571, 1998
[17] C. A. Lewinsohn, R.H. Jones, G.E. Youngblood, C.H. Henager, “Fiber creep rate and high-temperature properties of SiC/SiC composites”, Journal of Nuclear Materials, vol. 258-263, pp. 1557-1561, 1998
[18] T. Hinoki, L.L. Snead, Y. Katoh, A. Kohyama, R. Shinavski, “The effect of neutron-irradiation on the shear properties of SiC/SiC composites with varied interface”, Journal of Nuclear Materials, vol. 283-287, pp. 376-379, 2000
[19] T. Nozawa, K. Ozawa, S. Kondo, T. Hinoki, Y. Katoh, L.L. Snead, A. Kohyama, “Tensile, flexural, and shear properties of neutron irradiated SiC/SiC composites with different F/M interfaces”, Journal of ASTM International, vol. 2, 2, 2005
[20] H. Kishimoto , Y. Katoh , A. Kohyama, “Microstructural stability of SiC and SiC/SiC composites under high temperature irradiation environment”, Journal of Nuclear Materials, vol. 307–311, pp. 1130–1134, 2002
[21] T. Ishikawa, “A tough, thermally conductive silicon carbide composite with high strength up to 1600℃ in air”, Science, vol. 282, pp. 1295-2697, 1998
[22] T. Ishikawa, “SA-Tyrannohex-based Composite for High Temperature Applications”, Advances in Science and Technology, vol. 71, pp. 118-126, 2010
[23] 邱奕哲,「探討不同製程之碳化矽複合材料於高溫離子輻照環境下之空孔形成」,國立清華大學工程與系統科學所,碩士論文,中華民國一0二年
[6]K.L. Murty, I. Charit, “Structural materials for Gen-IV nuclear reactors: Challenges and opportunities”, Journal of Nuclear Materials, vol. 383, pp. 189-195, 2008
[25]W. Corwin, “U.S. Generation IV reactor integrated materials technology program”, Nuclear Engineering and Technology, vol. 38, pp. 591, 2006
[26]Next Generation Nuclear Plant Licensing Strategy, NGNP, 2008.
[27]PHYSOR 2012 Advanced Reactor Concepts Workshop, ORNL, Knoxville TN, 2012
[28]Next Generation Nuclear Plant Licensing Strategy, NGNP, 2009
FY 2007 Ten-Year Program Plan - Appendix 1.0 ,NGNP , 2007
[29] K. Yueh, D. Carpenter, H. Feinroth, “Clad in Clay”, Nucl Eng Int, pp. 6-14, 2010
[30]G. Griffith , U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development, 2011
[31] Y. Katoh, K. Ozawa, T. Hinoki, Y.B. Choi, L.L. Snead, A. Hasegawa, “Mechanical properties of advanced SiC fiber composites irradiated at very high temperatures”, Journal of Nuclear Materials, vol. 20, pp. 416-417, 2011
[32] L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, “Handbook on SiC properties for fuel performance modeling”, Journal of Nuclear Materials , vol. 77, pp. 329-371, 2007
[33] Y. Katoh, T. Nozawa, L.L. Snead, K. Ozawa, H. Tanigawa, “Stability of SiC and its composites at high neutron fluence”, Journal of Nuclear Materials, vol. 5, pp. 400-417, 2011
[34] R.H. Jones, C.H. Henager, “Subcritical crack growth processes in SiC/SiC ceramic matrix composites”, Journal of the European Ceramic Society, vol. 25, pp. 1717-1722, 2005
[35] L.L. Snead, Y. Katoh, S. Connery, “Swelling of SiC at intermediate and highirradiation temperatures”, Journal of Nuclear Materials, vol. 367, pp. 677-684, 2007
[36] L.H. Rovner ,G.R. Hopkins, Nuclear Technology, vol. 29, pp. 274, 1976
[37] S. J. Zinkle, “Fusion materials science: overview of challenges and recent progress”, Phys Plasmas, vol. 12, 2005
[38] R.H. Jones, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, B. Riccardi, “Promise and challenges of SiCf/SiC composites for fusion energy applications”, Journal of Nuclear Materials, vol. 307, pp. 1057–1072, 2002
[39]Y. Katoh, L. L. Snead, I. Szlufarska, W. J. Weber, “Radiation effects in SiC for nuclear structural applications”, Current Opinion in Solid State and Materials Science, vol. 16, pp. 143–152, 2012
[40]陳建宏,「核融合反應器環境下Hi-Nicalon Type-S碳化矽複合材料之輻射效應研究」,國立清華大學工程與系統科學所,碩士論文,中華民國九十七年
[41]何宗融,「單晶碳化矽在高溫矽離子輻照下之微結構變化」,國立清華大學工程與系統科學所,碩士論文,中華民國九十七年
[42] W. Jiang et al. , PHYSICAL REVIEW B 70, 165208, 2004
[43] L.L. Snead et al. , Nuclear Instruments and Methods in Physics Research B,141 123–132, 1998
[44]F. Gao, E.J. Bylaska, W.J. Weber, L.R. Corrales, “Ab initio and empirical-potential studies of defect properties in 3C-SiC”, Physical Review B, vol. 64, 245208, 2001
[45]F. Gao, W.J. Weber, “Atomic-level study of ion-induced nanoscale disordered domains in silicon carbide”, Applied Physics Letters, vol. 82, pp. 6, 2002
[46]F. Gao, E.J. Bylaska, W.J. Weber, “Native defect properties in B-SiC: Ab initio and empirical potential calculations”, Nuclear Instruments and Methods in Physics Research B, vol. 180, pp. 286-292, 2001
[47] 何雋禹,「利用超高解析電鏡分析單晶3C-碳化矽與SA-Tyrannohex全纖維複合材在高溫矽離子輻照下之缺陷」,國立清華大學工程與系統科學所,碩士論文,中華民國一0二年
[48] T. Yano, H. Miyazaki, M. Akiyoshi, T. Iseki, “X-ray diffractometry and high-resolution electron microscopy of neutron-irradiated SiC to a fluence of 1.9 ×1027 n/m2”, Journal of Nuclear Materials, vol. 253, pp. 78–86, 1998
[49] S. Kondo, Y. Katoh, L.L. Snead, “Microstructural defects in SiC neutron irradiated at very high temperatures “, Journal of Nuclear Materials, vol. 382, pp.160–169, 2008
[50] S. Kondo, Y. Katoh, L.L. Snead, “Cavity swelling and dislocation evolution in SiC at very high temperatures”, Journal of Nuclear Materials, vol. 386–388, pp. 222–226, 2009
[51] Y. Katoh, N. Hashimoto, S. Kondo, L.L. Snead, A. Kohyama, “Microstructural development in cubic silicon carbide during irradiation at elevated temperatures”, Journal of Nuclear Materials, vol. 351, pp. 228-240, 2006
[52]Y. Katoh, S. Kondo, L.L. Snead, “Microstructures of beta-silicon carbide after irradiation creep deformation at elevated temperatures”, Journal of Nuclear Materials, vol. 382, pp. 170–175, 2008
[53] L. Vincent, T. Sauvage, G. Carlot, P. Garcia, G. Martin, M.F. Barthe, P. Desgardin, “Thermal behaviour of helium in silicon carbide: Influence of microstructure”, Vacuum, Vol. 83, pp. S36–S39, 2009
[54] C.H. Zhang, S.E. Donnelly, V.M. Vishnyakov, J.H. Evans, T. Shibayama, Y.M. Sun, “A study of the formation of nanometer-scale cavities in helium-implanted 4H-SiC”, Nuclear Instruments and Methods in Physics Research B, Vol. 218, pp. 53–60, 2004
[55] C.H. Chen, Y. Zhang, E. Fu, Y. Wang, M.L. Crespillo, C. Liu, S. Shannon, W.J. Weber, “Irradiation-induced microstructural change in helium-implanted single
crystal and nano-engineered SiC”, Journal of Nuclear Materials, Vol. 453, pp. 280–286, 2014
[56] S.J. Zinkle, “Effect of H and He irradiation on cavity formation and blistering in ceramics”, Nuclear Instruments and Methods in Physics Research B, vol. 286, pp. 4–19, 2012
[57] K. Hojou and K. Izui, “Bubble in SiC crystal formed by helium ion irradiation at high temperatures”, Journal of Nuclear Materials, Vol. 160, pp. 147-152, 1988
[58] S. Leclerc, M. F. Beaufort, A. Declémy, J. F. Barbot, “Evolution of defects upon annealing in He-implanted 4 H -SiC”, Applied Physics Letters 93, 122101, 2008
[59] J. Chen, P. Jung, H. Trinkhaus, Phys. Rev. B 61, 12923, 2000
[60]P. Jung, J. Nucl. Mater. 191–194, 377, 1992
[61] E. Oliviero, A. van Veen, A.V. Fedorov, M.F. Beaufort, J.F.Bardot, Nucl. Instrum. and Meth. B 186, 223, 2002
[62] E. Oliviero, M.F. Beaufort, J.F. Bardot, A. van Veen, A.V.Fedorov, J. Appl. Phys. 93, 231, 2003
[63] Rene´e M. Van Ginhoven, Alain Chartier, Constantin Meis, William J. Weber, L. Rene´ Corrales, Journal of Nuclear Materials 348, 51–59, 2006
[64] Ruihuan Li, Wenbo Li, Chong Zhang, Pengbo Zhang, Hongyu Fan, Dongping Liu, Levente Vitos, Jijun Zhao, Journal of Nuclear Materials 457 , 36–41, 2015
[65] R.J. Price, “Effects of fast-neutron irradiation on pyrolytic silicon carbide”,Journal of Nuclear Materials, vol. 33, pp. 17–22, 1969
[66] L.L. Snead, R.H. Jones, A. Kohyama, P. Fenici “Status of silicon carbide composites for fusion” Journal of Nuclear Materials. 233-237, 26-36, 1996.
[67] M.E. Sawan, N.M. Ghoniem, L. Snead, Y. Katoh “Damage production and accumulation in SiC structures in inertial and magnetic fusion systems”, Journal of Nuclear Materials, 417, 445–450, 2011
[68] J.F. Ziegler, “The Stopping of Energetic Light Ions in Elemental Matter”, Journal of Applied Physics, vol. 85, pp. 1249-1272, 1999
[69] J.F. Ziegler, J.P. Biersack, U. Littmark, Stopping and Range of Ions in Solids , Pergamon Press, New York, 1985
[70] Donald R. Olander, Fundamental aspects of nuclear reactor fuel elements, 1976
[71] 陳力俊,材料電子顯微鏡學,國科會精儀中心,新竹,中華民國八十三年
[72] 汪建民、杜正恭,材料分析,中國材料科學學會,中華民國八十七年
[73] R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy “, Plenum Press, New York, 1996
[74] H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicroscopy, 19, pp. 121, 1986
[75] F. Hofer and P. Warbichler, Ultramicroscopy, 63, pp. 21,1996
[76] N. Bonnet, C. Coliex, C. Mory, M. Tence, Scanning Microscopy 2 (Suppl.) , 1988
[77] A. Berger, J. Mayer, H. Kohl, “Detection limits in elemental distribution images produced by energy filtering TEM: case study of grain boundaries in Si3N4Original Research Article”, Ultramicroscopy, vol. 55, pp. 101-112, 1994
[78] P. A. Crozier, R.F. Egerton, “Mass-thickness determination by Bethe-sum-rule normalization of the electron energy-loss spectrum”, Ultramicroscopy, vol. 27, pp. 9-18, 1988
[79] D.B. Williams, C.B. Carter, Transmission Electron Microscopy, Plenum Press, New York and London, 1996
[80] T. Malis, S. Cheng and R. F. Egerton, J. Electron. Microsc. Tech., 8, pp. 8471, 1988
[81]吳泰伯、許樹恩,X光繞射原理與材料結構分析,中國材料科學學會,1992
[82] P. Willmott, An Introduction to Synchrotron Radiation, 2011
[83]胡均輔,「SA-Tyrannohex全纖維碳化矽複合材料於高溫離子輻照下空泡行為與晶粒尺寸之效應」,國立清華大學工程與系統科學所,碩士論文,中華民國一0四年
[84] H. Ryssel, “Ion Implantation”, 1986
[85] Yudi Pramono, Kazunari Sasaki, Toyohiko Yano, ” release and diffusion rate of helium in neutron-irradiated SiC”, Journal of nuclear science and technology, Vol. 41, No. 7, p. 751–755, 2004
[86]陳科夆,「應用電子能量損失譜及能量過濾電鏡研究生醫及核能材料之特殊問題」,國立清華大學工程與系統科學所,博士論文,中華民國九十七年
[877]A. A. Lucas, phys. Rev. B 28, 2485, 1983
[88]L.L. Snead, S.J. Zinkle, Nucl. Instrum. and Meth. B, 191, 497, 2002
[89] Sosuke Kondo,Tatsuya Hinoki, Akira Kohyama, Materials Transactions, Vol. 46, No. 6 pp. 1388 - 1392, 2005
[90]A. Hasegawa et al., Journal of Nuclear Materials, pp. 283–287, 2000
[91] Y. Ktoah et al., Journal of Nuclear Materials 462, 450–457, 2015
[92] Y. Watanabe et al., Nuclear Instruments and Methods in Physics Research B 267, 3223–3226, 2009
[93] G. D. Samolyuk et al., Fusion Reactor Materials Program Volume 54, DOE/ER-0313/54, 2013
[94] 鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,滄海書局,中華民國一0一年
[95] D.B. Williams, C.B. Carter, Transmission Electron Microscopy, Plenum Press, New York and London, 1996
[96] F. Krumeich, E. Muller, R.A. Wepf, “Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy”, Micron, vol. 43, pp. 1-14, 2013
[97]E. Okunishi, H. Sawada, Y. Kondo, “Experimental study of annular bright field (ABF) imaging using aberration-corrected scanning transmission electron microscopy (STEM)”, Micron, vol. 43, pp. 538-544, 2012
[98] G.D. Samolyuk, Y.N. Osetsky, R.E. Stoller, Journal of Nuclear Materials 465, 83e88, 2015
[99] J. Xi et al., Nuclear Instruments and Methods in Physics Research B, 356–357, 62–68, 2015
[100] Yanwen Zhang et al., Phys. Chem. Chem. Phys., 14, 13429–13436, 2012
[101] Manabu Ishimaru et al., APPLIED PHYSICS LETTERS 103, 033104, 2013
[102] Kenta Imada et al., Journal of Nuclear Materials 465, 433-437, 2015
[103] F. Najmabadi, UCLA-PPG.-1323, 1991
[104] S. Ueda, S. Nishio, Y. Seki, R. Kurihara, J. Adachi, S. Yamazaki, “A fusion power reactor concept using SiC/SiC composites” Journal of Nuclear. Materials, 258–263, p. 1589, 1998
[105] A.S. Pérez Ramirez, A. Caso, L. Giancarli, N. Le Bars, G. Chaumat, J.F. Salavy, J. Szczepanski, “TAURO: a ceramic composite structural material self-cooled Pb-17Li breeder blanket concept”, Journal of Nuclear Materials, 233–237, 1257–1261, 1996
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *