帳號:guest(18.191.215.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘洧樊
作者(外文):Pan, Wei Fan
論文名稱(中文):大氣層次級宇宙射線蒙地卡羅模擬及飛航劑量評估
論文名稱(外文):Monte Carlo simulations of cosmic radiation in atmosphere and an assessment of aviation dose
指導教授(中文):許榮鈞
指導教授(外文):Sheu, Rong Jiun
口試委員(中文):劉鴻鳴
江祥輝
口試委員(外文):Liu, Hong Ming
Jiang, Shiang Huei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:102013503
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:121
中文關鍵詞:宇宙射線二次輻射飛航劑量蒙地卡羅FLUKA
外文關鍵詞:Cosmic-ray induced radiationaviation doseMonte CarloFLUKA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:209
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
大氣層次級宇宙射線主要由銀河宇宙射線與空氣組成原子撞擊所產生,其強度隨高度、位置與時間變化。次級宇宙射線在地表對人類具有一定的劑量貢獻,若在飛航高度上,其劑量貢獻更是不容小覷。由於大氣層次級宇宙射線輻射場極為複雜,輻射粒子種類多而且能量範圍極廣,不易單靠實驗進行定量分析,本研究利用蒙地卡羅方法進行詳細的模擬,建立一組大氣層次級宇宙射線劑量隨高度、位置與時間變化的資料庫,可以快速準確地評估地球表面大氣層內任何位置之宇宙射線各成分的輻射劑量。
為了探討次級宇宙射線在大氣層中的分布特性,本研究採用內建有宇宙射線計算模組的FLUKA蒙地卡羅程式,考慮宇宙射線隨位置與時間變化共計44個模擬案例,計算結果彙整以不同高度下有效劑量率隨垂直截止剛度變化關係進行擬合與內插,建立大氣層內三維次級宇宙射線劑量資料庫與評估模型,並通過一系列驗證確認其正確性。本研究建立的資料庫與評估模型具有廣泛潛在的用途,例如可以快速準確地評估任何飛航劑量。首先著重在台灣相關的重要航線,本研究評估台灣飛往紐約、洛杉磯、法蘭克福、阿姆斯特丹、雪梨、東京、新加坡、杜拜、北京、香港及金門等11條常見航線的有效劑量詳細資訊,包括次級宇宙射線各成分的即時劑量率與累積劑量,研究結果除了有利於宇宙射線相關研究參考之外,更提供國內管制單位與一般民眾關於背景輻射的重要資訊。
Secondary cosmic radiation in atmosphere is generated by interaction of primary galactic cosmic radiation with the constituents of air. Humans at sea level receive certain dose exposure from secondary cosmic radiation, if at flight altitudes or mountains, the dose contribution becomes much higher. Because of the complexity of secondary cosmic radiation, measurement alone is not enough to provide details of the radiation field. Based on the results of a series of Monte Carlo simulations, this study established a rather complete database of secondary cosmic radiation in atmosphere considering the effective dose variations of each components as functions of altitude, location, and time.
The FLUKA Monte Carlo transport code was used to study the characteristics of secondary cosmic radiation in atmosphere. In total, 44 simulation cases were carried out in this study. The simulation results were benchmarked, analyzed and summarized in a database by applying curve fitting for effective dose rates at various altitudes and vertical cut-off rigidities for the two extremes of the sun's 11-year activity cycle. The database established in this study could have many potential applications. One example is to quickly and accurately estimate the dose exposure for any flight route. Focusing on those popular flights in Taiwan, this study estimated the aviation doses for the following flight routes from Taiwan to New York, Los Angeles, Frankfurt, Amsterdam, Sydney, Tokyo, Singapore, Dubai, Beijing, Hong Kong and Kinmen. The models and results presented in this study could not only be beneficial for those cosmic-ray related studies but also provide useful dada about natural background radiation for regulatory agencies and general public in Taiwan.
摘要 i
Abstract ii
誌謝詞 iii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 大氣層宇宙射線 1
1.2 文獻回顧 6
1.3 研究動機與目的 11
第二章 宇宙射線蒙地卡羅遷移計算 13
2.1 蒙地卡羅方法 13
2.2 FLUKA遷移計算程式 13
2.3 FLUKA宇宙射線遷移計算副程式 14
2.3.1 模擬幾何模型 14
2.3.2 模擬高度參數 15
2.3.3 模擬射源 16
2.3.4 地球磁場 19
第三章 大氣層宇宙射線劑量分佈資料庫 21
3.1 資料庫建立與設定 21
3.1.1 資料庫建立之列表 21
3.1.2 垂直截止剛度 27
3.1.3 資料庫擬合及高度內插 33
3.2 大氣層宇宙射線模擬結果特性 39
3.2.1 地理經度變化 39
3.2.2 地磁緯度變化 42
3.2.3 高度變化 44
3.2.4 宇宙射線種類比例 45
3.3 資料庫驗證 48
3.3.1 Geomagnetic cut-off acceptance 48
3.3.2 劑量轉換與模擬驗證 54
3.3.3 擬合內插順序驗證 58
3.3.4 垂直截止剛度驗證 60
3.3.5 台灣地面年有效劑量率評估 61
第四章 飛航劑量應用 63
4.1飛航劑量驗證 63
4.2台灣飛航劑量評估 67
第五章 結論 96
參考文獻 98
附錄A FLUKA執行宇宙射線模擬方法 101
A.1 atmloc_2011.f轉譯 101
A.2 atmloc_2011操作說明 101
A.3 atmloc_2011程式輸出檔及修改方法 102
A.4 模擬輸入檔說明與準備 107
A.5 執行模擬 114
附錄B 大氣層次級宇宙射線有效劑量評估程式設計與使用方法 115
[1] D. O’Sullivan, “Evaluation of the Cosmic Radiation Exposure of Aircraft Crew”, DOSMAX Report, 2000
[2] M. DURANTE, “Biological dosimetry in astronauts”, Rivista Del Nuovocimento, vol. 19, pp. 12, 1996
[3] Bartol Research Institute, “neutronm.bartol.udel.edu/” (2014/8)
[4] A.K. Singh, Devendraa Siingh, R.P. Singh, “Impact of galactic cosmic rays on Earth’s atmosphere and human health”, Atmospheric Environment, vol. 45, pp. 3806-3818, 2011
[5] Koskinen, “Single particle motion”, Physics of Space Storms From the Solar Surface to the Earth, pp.102-103, 2011
[6] W. Friedberg et al., “Cosmic Radiation and Aircrew Exposure”, Nuclear Technology Publishing, pp. 323–328, 2000
[7] L. Wedekind, “Upgrading the Safety and Security of Radioactive Sources in the Republic of Georgia”, IAEA News Centre International Atomic Energy Agency Vienna, 2002
[8] Goldhagen P, “Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane”, Nucl Instrum Methods Phys Res A. 1, vol. 476, pp. 42-51, 2002
[9] B. J. Lewis, L. G. I. Bennett, A. R. Green, M. J. McCall, B. Ellaschuk, A. Butler and M. Pierre et al., “Galactic and solar radiation exposure to aircrew during a solar cycle”, Radiation Protection Dosimetry, vol. 102, pp. 207–227, 2002
[10] J.F. Bottollier-Depois, P. Beck, M. Latocha et al., “Comparison of Codes Assessing Radiation Exposure of Aircraft Crew due to Galactic Cosmic Radiation”, EURADOS Report , vol. 3, 2012
[11] Claudio Antonio Federico et al., “Estimates of cosmic radiation dose received by aircrew of DCTA’s flight test special group”, Journal of Aerospace Technology and Management, 2010
[12] Tatsuhiko Sato et al., “Analytical Functions to Predict Cosmic-Ray Neutron Spectra in the Atmosphere”, Radiation Research, vol. 166, pp.544–555, 2006
[13] Tatsuhiko Sato et al., “Development of PARMA: PHITS-based Analytical Radiation Model in the Atmosphere”, Radiation Research, vol. 170, pp. 244–259, 2008
[14] Chie Chung et al., “Cosmic radiation doses in commercial air travel”, NSC85-2212-E-007-053, 1996
[15] Alfredo Ferrari et al., “Fluka:a multi-particle transport code version 2011”, CERN-2005-010 INFN TC-05/11 SLAC-R-773, 2005
[16] G. D. Badhwar and P. O'Neill, “Galactic cosmic radiation model and its applications”, Advances in Space Research, vol. 17, pp. 7-17, 1996
[17] Goldhagen, P., Clem, J. M., Wilson, J. W., “The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude”, Radiat. Prot. Dosimetry., Vol.110, pp. 387-392, 2004
[18] Tablecurve, “http://www.sigmaplot.com/products/tablecurve2d/tablecurve2d.php” (2014/10)
[19] 行政院原子能委員會,「民國102年全國輻射工作人員劑量資料統計年報」,中華民國一百零二年
[20] 林友明,「高空飛行之宇宙射線劑量評估」,中華民國輻射防護協會輻射防護資訊,第十五期,第5-6頁,中華民國八十四年
[21] 台灣行政院原子能委員會, “http://www.aec.gov.tw/” (2015/1)
[22] Flightaware,
“https://zh-tw.flightaware.com/” (2015/3)
[23] H.Schraube, W.Heinrich, “Aviation Route Dose Calculation and its Numerical Basis”, Radiat. Prot. Dosim., Vol.32, 2000
[24] K.O'Brien, “LUIN, a code for the calculation of cosmic ray propagation in the atmosphere”, Health and Safety Lab., Report HASL-275, 1973
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *