帳號:guest(3.137.187.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林家聲
作者(外文):Lin, Chia Sheng
論文名稱(中文):不同維度矽/碳奈米複合材料的製備與鋰離子電池負極材料應用
論文名稱(外文):Fabrication of different dimensional Si/C nanocomposites as anode materials for lithium ion battery
指導教授(中文):董瑞安
江啟勳
指導教授(外文):Doong, Ruey An
Chiang, Chi Shiun
口試委員(中文):吳劍侯
胡啟章
口試委員(外文):Wu,Chien Hou
Hu, Chi 20Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:102012528
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:99
中文關鍵詞:鋰離子電池負極材料奈米矽奈米碳管還原氧化石墨烯規則中孔洞碳材
外文關鍵詞:Lithium ion batteryanode materialsSiliconCarbon nanotubesGrapheneMesoporous carbons
相關次數:
  • 推薦推薦:0
  • 點閱點閱:135
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鋰離子二次電池在我們日常生活中扮演了極重要的角色,應用範圍小至手機、平板、筆電的電池大至電動車的電池,都能發現其蹤影,所以如何提升鋰離子電池的儲電量,將成為現今的一大課題;矽作為地殼上僅次於氧含量第二多的元素,擁有無毒性及前處理容易等優點,更重要的是其理論電容量為~4200 mAh/g,相對於市售鋰電池碳負極材料理論電容值372 mAh/g,電量高出十倍,是具有相當優勢的負極材料之一,但在充放電反應時,矽的體積會產生劇烈的膨脹導致顆粒碎裂,造成電容值的急速下降,而此問題將成為矽成為商業化產品的一大阻礙。
本研究將成功地使用不同維度的碳材,分別製備出一維(奈米碳管)、二維(還原氧化石墨烯)和三維(規則中孔洞碳材)的矽-碳複合材料,做為負極材料應用於鋰離子電池上,利用不同種類的碳之結構特性,減緩充放電過程中所帶來體積過度膨脹的問題且避免奈米矽顆粒的聚集,並經由充放電儀測試,得到不同維度下矽-碳複合材料之最佳比例,最後使用其他電化學分析去加以驗證;不同維度:一維、二維及三維之最佳比例的複合材料,經100 mAh/g充放電速率下掃描一百圈下,其電容值分別為~800 mAh/g、~1000 mAh/g及~1300 mAh/g,且庫倫效率皆達到97%以上,表示本研究的複合材料能在長圈數的充放電下,維持材料的結構不受破壞以及電化學反應的穩定性,而未來將可透過此方法,改善在充放電過程中體積膨脹率大的材料上,例如:錫、銻、鎂、鋁等,用以提升鋰離子電池的效能以及增進電容量。
Lithium ion batteries (LIBs) play an important role in our daily life. It has been used for cell phone, ipad, laptop and battery electric vehicle. It is one of the richest topics to improve the battery performance in nowadays. Silicon is present in the earth’s crust at 27.7 % of the total and, after oxygen, is the second most abundant element. In addition, Silicon has been widely used as the anode material for lithium ion batteries (LIBs) because of the huge theoretical capacity (~4200 mAh/g) compared with commercial carbon material (~372 mAh/g) and relatively low discharge potential (~0.5V VS. Li/Li+). However, the large volume expansion (~ 400%) after charge-discharge processes hampers the application of silicon to LIBs.
In this study, we have synthesized successfully that the combination of Si with different dimensional carbon materials including carbon nanotubes (1D), graphenes (2D), and mesoporous carbons (3D) can minimize the volume expansion, resulting in the enhancement of electrochemical performance of silicon-based electrodes. After 100 cycles, the capacity of 1D, 2D and 3D nanocomposites are ~800 mAh/g, ~1000 mAh/g and ~1300 mAh/g respectively. The coulomb efficiency is above 97% remarkably. It shows our different dimensional carbon materials can be maintained structure after charge-discharge and excellent electrochemical stability. In the future, it can provide the method to improve materials which have the large volume expansion after charge-discharge processes, for example Sn, Sb, Mg and Al.
第一章 緒 論 1
1-1 前言 1
1-2 研究動機 3
1-3 研究目的 4
第二章 文獻回顧 5
2-1 鋰離子電池的工作原理 5
2-2 鋰離子電池之內部組件 6
2-2-1 正極材料(Cathode) 7
2-2-2 負極材料(Anode) 11
2-2-3 隔離膜 (Separator) 16
2-2-4 電解液 (Electrolyte) 17
2-3 奈米矽 18
2-4 奈米矽應用於鋰離子電池 20
2-4-1 奈米矽之形貌改變 21
2-4-2 碳基材法 24
第三章 實驗方法與步驟 30
3-1 實驗藥品與器材 30
3-2 實驗架構 32
3-3 一維結構 (Silicon/CNTs) 33
3-4 二維結構 (Silicon/reduced graphene oxide) 34
3-4-1 氧化石墨烯的合成步驟 34
3-4-2 矽與還原氧化石墨烯複合材料之合成 35
3-5 三維結構 (Silicon/ Ordered mesoporous carbons) 36
3-5-1 50 wt% Resol 的合成 36
3-5-2 矽與規則中孔洞碳材複合材料之合成 37
3-6 鋰離子電池之製備與組裝 38
3-6-1 電極材料製備 38
3-6-2 鋰離子電池之組裝 39
3-7 材料特性鑑定及電化學測式 40
3-7-1 X光粉末繞射儀 (X-ray Powder Diffractometer, XRD) 40
3-7-2 比表面積分析儀 (Brunauer-Emmett-Teller specific surface area analyzer, BET) 40
3-7-3 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 41
3-7-4 電子能譜儀 (X-ray Photoelectron Spectrometer, XPS) 41
3-7-5 拉曼光譜儀 (Raman Spectroscopy) 42
3-7-6 定電流充放電測試 42
3-7-7 循環伏安法 43
3-7-8 交流阻抗法 43
第四章 結果與討論 44
4-1 不同維度碳材的特性鑑定 44
4-1-1 XRD 44
4-1-2 Raman 46
4-1-3 TEM 48
4-1-4 XPS 49
4-2 不同維度矽-碳複合材料特性鑑定 51
4-2-1 一維矽-碳複合材料:矽與碳奈米管 51
4-2-2 二維矽-碳複合材料:矽與還原氧化石墨烯 56
4-2-3 三維矽-碳複合材料:矽與規則中孔洞碳材 61
4-3 不同維度矽-碳複合材料的電化學表現 66
4-3-1 純矽材料應用於鋰離子電池 66
4-3-2 一維矽-碳複合材料:矽與碳奈米管之電化學表現 69
4-3-3 二維矽-碳複合材料:矽與還原氧化石墨烯之電化學表現 74
4-3-4 三維矽-碳複合材料:矽與規則中孔洞碳材之電化學表現 79
4-4 三種不同維度結構的複合材料之間長圈數下的電化學表現 83
第五章 結 論 88
5-1 不同維度矽-碳複合材料之合成 88
5-2 不同含矽比例的複合材料特性探討與其電化學行為 88
5-3 不同維度最佳化比例在充放電長圈數下的電化學行為 89
1. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-657.
2. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
3. (a) Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334 (6058), 928-935; (b) Palacin, M. R., Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society Reviews 2009, 38 (9), 2565-2575.
4. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
5. Rhee, S. E. BUY OR SELL-Korea battery stocks: how much energy left? http://www.reuters.com/article/2009/09/14/buysell-battery-korea-idUSSEO32757820090914.
6. Chou, S.-L.; Pan, Y.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X., Small things make a big difference: binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics 2014, 16 (38), 20347-20359.
7. (a) Li, H.; Wang, Z.; Chen, L.; Huang, X., Research on Advanced Materials for Li-ion Batteries. Advanced Materials 2009, 21 (45), 4593-4607; (b) Bruce, P. G.; Scrosati, B.; Tarascon, J.-M., Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition 2008, 47 (16), 2930-2946.
8. (a) Ma, D.; Cao, Z.; Hu, A., Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nano-Micro Lett. 2014, 6 (4), 347-358; (b) Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources 2011, 196 (1), 13-24; (c) Szczech, J. R.; Jin, S., Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science 2011, 4 (1), 56-72.
9. Wu, H.; Cui, Y., Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7 (5), 414-429.
10. Kasavajjula, U.; Wang, C.; Appleby, A. J., Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources 2007, 163 (2), 1003-1039.
11. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat Nano 2008, 3 (1), 31-35.
12. Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube Battery Anodes. Nano Letters 2009, 9 (11), 3844-3847.
13. Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science 2011, 4 (8), 2682-2699.
14. WHITTINGHAM, M. S., Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126-1127.
15. Gummow, R. J.; de Kock, A.; Thackeray, M. M., Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 1994, 69 (1), 59-67.
16. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 (017. Patil, A.; Patil, V.; Wook Shin, D.; Choi, J.-W.; Paik, D.-S.; Yoon, S.-J., Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin 2008, 43 (8–9), 1913-1942.
18. Urban, A.; Lee, J.; Ceder, G., The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes. Advanced Energy Materials 2014, 4 (13), n/a-n/a.
19. Jang, Y. I.; Huang, B.; Chiang, Y. M.; Sadoway, D. R., Stabilization of LiMnO2 in the α ‐ NaFeO2 Structure Type by LiAlO2 Addition. Electrochemical and Solid-State Letters 1998, 1 (1), 13-16.
20. Nakayama, M.; Kaneko, M.; Wakihara, M., First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure. Physical Chemistry Chemical Physics 2012, 14 (40), 13963-13970.
21. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society 1997, 144 (4), 1188-1194.
22. Yamaki, J.-i.; Tobishima, S.-i.; Hayashi, K.; Keiichi, S.; Nemoto, Y.; Arakawa, M., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources 1998, 74 (2), 219-227.
23. Su , D. S.; Schlögl, R., Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem 2010, 3 (2), 136-168.
24. Wagemaker, M.; van Eck, E. R. H.; Kentgens, A. P. M.; Mulder, F. M., Li-Ion Diffusion in the Equilibrium Nanomorphology of Spinel Li4+xTi5O12. The Journal of Physical Chemistry B 2009, 113 (1), 224-230.
25. Arora, P.; Zhang, Z., Battery Separators. Chemical Reviews 2004, 104 (10), 4419-4462.
26. (a) Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B., Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394 (6692), 456-458; (b) Sloop, S. E.; Kerr, J. B.; Kinoshita, K., The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge. Journal of Power Sources 2003, 119–121, 330-337; (c) Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004, 104 (10), 4303-4418; (d) Shui Zhang, S., An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochemistry Communications 2006, 8 (9), 1423-1428; (e) Zhang, S. S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources 2007, 164 (1), 351-364.
27. Huggins, R. A., Lithium alloy negative electrodes. Journal of Power Sources 1999, 81–82 (0), 13-19.
28. Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R., Colossal Reversible Volume Changes in Lithium Alloys. Electrochemical and Solid-State Letters 2001, 4 (9), A137-A140.
29. Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J., Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews 2010, 39 (8), 3115-3141.
30. Peled, E.; Golodnitsky, D.; Ardel, G., Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. Journal of The Electrochemical Society 1997, 144 (8), L208-L210.
31. (a) Chan, C. K.; Ruffo, R.; Hong, S. S.; Cui, Y., Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources 2009, 189 (2), 1132-1140; (b) Wu, X.; Wang, Z.; Chen, L.; Huang, X., Ag-enhanced SEI formation on Si particles for lithium batteries. Electrochemistry Communications 2003, 5 (11), 935-939.
32. Ryu, J. H.; Kim, J. W.; Sung, Y.-E.; Oh, S. M., Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries. Electrochemical and Solid-State Letters 2004, 7 (10), A306-A309.
33. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y., Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Letters 2011, 11 (7), 2949-2954.
34. Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P., Carbon nanotubes for lithium ion batteries. Energy & Environmental Science 2009, 2 (6), 638-654.
35. Wang, W.; Kumta, P. N., Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes. ACS Nano 2010, 4 (4), 2233-2241.
36. Xue, L.; Xu, G.; Li, Y.; Li, S.; Fu, K.; Shi, Q.; Zhang, X., Carbon-Coated Si Nanoparticles Dispersed in Carbon Nanotube Networks As Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2013, 5 (1), 21-25.
37. (a) Wang, D.; Lu, S.; Kulesza, P. J.; Li, C. M.; De Marco, R.; Jiang, S. P., Enhanced oxygen reduction at Pd catalytic nanoparticles dispersed onto heteropolytungstate-assembled poly(diallyldimethylammonium)-functionalized carbonnanotubes. Physical Chemistry Chemical Physics 2011, 13 (10), 4400-4410; (b) Cui, Z.; Gong, C.; Guo, C. X.; Li, C. M., Mo2C/CNTs supported Pd nanoparticles for highly efficient catalyst towards formic acid electrooxidation. Journal of Materials Chemistry A 2013, 1 (4), 1179-1184.
38. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
39. Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H., Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chemical Communications 2010, 46 (12), 2025-2027.
40. Xiang, H.; Zhang, K.; Ji, G.; Lee, J. Y.; Zou, C.; Chen, X.; Wu, J., Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 2011, 49 (5), 1787-1796.
41. Chou, S.-L.; Wang, J.-Z.; Choucair, M.; Liu, H.-K.; Stride, J. A.; Dou, S.-X., Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications 2010, 12 (2), 303-306.
42. Zeng, L.; Zheng, C.; Deng, C.; Ding, X.; Wei, M., MoO2-Ordered Mesoporous Carbon Nanocomposite as an Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2013, 5 (6), 2182-2187.
43. Chang, P.-y.; Huang, C.-h.; Doong, R.-a., Ordered mesoporous carbon–TiO2 materials for improved electrochemical performance of lithium ion battery. Carbon 2012, 50 (11), 4259-4268.
44. Cheng, M.-Y.; Hwang, B.-J., Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery. Journal of Power Sources 2010, 195 (15), 4977-4983.
45. Li, Z.; Liu, N.; Wang, X.; Wang, C.; Qi, Y.; Yin, L., Three-dimensional nanohybrids of Mn3O4/ordered mesoporous carbons for high performance anode materials for lithium-ion batteries. Journal of Materials Chemistry 2012, 22 (32), 16640-16648.
46. Junsu, P.; Gil-Pyo, K.; Inho, N.; Soomin, P.; Jongheop, Y., One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries. Nanotechnology 2013, 24 (2), 025602.
47. Xu, Y.; Zhu, Y.; Wang, C., Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. Journal of Materials Chemistry A 2014, 2 (25), 9751-9757.
48. Zhang, Y.; Zhang, X. G.; Zhang, H. L.; Zhao, Z. G.; Li, F.; Liu, C.; Cheng, H. M., Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochimica Acta 2006, 51 (23), 4994-5000.
49. Tang, H.; Tu, J.-p.; Liu, X.-y.; Zhang, Y.-j.; Huang, S.; Li, W.-z.; Wang, X.-l.; Gu, C.-d., Self-assembly of Si/honeycomb reduced graphene oxide composite film as a binder-free and flexible anode for Li-ion batteries. Journal of Materials Chemistry A 2014, 2 (16), 5834-5840.
50. Zhou, M.; Cai, T.; Pu, F.; Chen, H.; Wang, Z.; Zhang, H.; Guan, S., Graphene/Carbon-Coated Si Nanoparticle Hybrids as High-Performance Anode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces 2013, 5 (8), 3449-3455.
51. Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou; Sun, G.; Xin, Q., Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. The Journal of Physical Chemistry B 2003, 107 (26), 6292-6299.
52. Tong, X.; Wang, H.; Wang, G.; Wan, L.; Ren, Z.; Bai, J.; Bai, J., Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries. Journal of Solid State Chemistry 2011, 184 (5), 982-989.
53. Dong, L.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S., Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 2010, 48 (3), 781-787.
54. Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M., New insights into the structure and reduction of graphite oxide. Nat Chem 2009, 1 (5), 403-408.
55. Yang, H.; Yan; Liu, Y.; Zhang, F.; Zhang, R.; YanMeng, Y.; Li, M.; Xie, S.; Tu, B.; Zhao, D., A Simple Melt Impregnation Method to Synthesize Ordered Mesoporous Carbon and Carbon Nanofiber Bundles with Graphitized Structure from Pitches. The Journal of Physical Chemistry B 2004, 108 (45), 17320-17328.
56. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A.; Ruoff, R. S., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47 (1), 145-152.
57. (a) Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics 2007, 9 (11), 1276-1290; (b) Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J., Facile Synthesis and Characterization of Graphene Nanosheets. The Journal of Physical Chemistry C 2008, 112 (22), 8192-8195.
58. Wang, H.; Robinson, J. T.; Li, X.; Dai, H., Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. Journal of the American Chemical Society 2009, 131 (29), 9910-9911.
59. (a) Wang, Z.; Dong, Y.; Li, H.; Zhao, Z.; Bin Wu, H.; Hao, C.; Liu, S.; Qiu, J.; Lou, X. W., Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 2014, 5; (b) Wang, D.-W.; Du, A.; Taran, E.; Lu, G. Q.; Gentle, I. R., A water-dielectric capacitor using hydrated graphene oxide film. Journal of Materials Chemistry 2012, 22 (39), 21085-21091; (c) Some, S.; Kim, Y.; Yoon, Y.; Yoo, H.; Lee, S.; Park, Y.; Lee, H., High-Quality Reduced Graphene Oxide by a Dual-Function Chemical Reduction and Healing Process. Scientific Reports 2013, 3, 1929.
60. (a) Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B., Highly Reversible Lithium Storage in Nanostructured Silicon. Electrochemical and Solid-State Letters 2003, 6 (9), A194-A197; (b) Obrovac, M. N.; Christensen, L., Structural Changes in Silicon Anodes during Lithium Insertion/Extraction. Electrochemical and Solid-State Letters 2004, 7 (5), A93-A96.
61. (a) Hatchard, T. D.; Dahn, J. R., In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon. Journal of The Electrochemical Society 2004, 151 (6), A838-A842; (b) Lu, Z.; Zhu, J.; Sim, D.; Shi, W.; Tay, Y. Y.; Ma, J.; Hng, H. H.; Yan, Q., In situ growth of Si nanowires on graphene sheets for Li-ion storage. Electrochimica Acta 2012, 74, 176-181; (c) Yu, Y.; Gu, L.; Zhu, C.; Tsukimoto, S.; van Aken, P. A.; Maier, J., Reversible Storage of Lithium in Silver-Coated Three-Dimensional Macroporous Silicon. Advanced Materials 2010, 22 (20), 2247-2250.
62. (a) Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Moreno, J. S., Structured Silicon Anodes for Lithium Battery Applications. Electrochemical and Solid-State Letters 2003, 6 (5), A75-A79; (b) Khomenko, V. G.; Barsukov, V. Z., Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries. Electrochimica Acta 2007, 52 (8), 2829-2840; (c) Liu, Y.; Matsumura, T.; Imanishi, N.; Hirano, A.; Ichikawa, T.; Takeda, Y., Preparation and Characterization of Si ∕ C Composite Coated with Polyaniline as Novel Anodes for Li-Ion Batteries. Electrochemical and Solid-State Letters 2005, 8 (11), A599-A602; (d) Obrovac, M. N.; Krause, L. J., Reversible Cycling of Crystalline Silicon Powder. Journal of The Electrochemical Society 2007, 154 (2), A103-A108; (e) Yoshio, M.; Wang, H.; Fukuda, K.; Umeno, T.; Dimov, N.; Ogumi, Z., Carbon-Coated Si as a Lithium-Ion Battery Anode Material. Journal of The Electrochemical Society 2002, 149 (12), A1598-A1603.
63. Shi, M.; Chen, Z.; Sun, J., Determination of chloride diffusivity in concrete by AC impedance spectroscopy. Cement and Concrete Research 1999, 29 (7), 1111-1115.
64. Ara, M.; Wadumesthrige, K.; Meng, T.; Salley, S. O.; Ng, K. Y. S., Effect of microstructure and Sn/C ratio in SnO2-graphene nanocomposites for lithium-ion battery performance. RSC Advances 2014, 4 (39), 20540-20547.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *