帳號:guest(13.59.197.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林建廷
作者(外文):Lin, Chien Ting
論文名稱(中文):具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
論文名稱(外文):Photo-Responsive Lactoferrin-Coated Nanopea with Dual Targeted Heat-Triggered Drug Delivery Approach for Enhanced Tumor Therapy
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang Hsiu
口試委員(中文):林宗宏
張建文
許馨云
黃郁棻
口試委員(外文):Lin, Zong Hong
Chang, Chien Wen
Hsu, Hsin Yun
Huang, Yu Fen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:102012527
出版年(民國):104
畢業學年度:104
論文頁數:74
中文關鍵詞:標靶性光熱及化學協同治療歐洲紫杉醇雙乳化法乳鐵蛋白氧化石墨烯
外文關鍵詞:targeted chemophotothermal therapyDocetaxeldouble emulsion methodlactoferringraphene oxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:450
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究中,我們利用雙乳化法製備出具有光熱敏感性之乳鐵蛋白(lactoferrin, Lf)修飾
豌豆型的藥物傳輸系統,組成包括氧化石墨烯(GO)與聚乙烯醇(PVA)。合成過程中,
PVA 的雙性特性,在油水介面中能夠形成奈米微胞,並包覆大量油相藥物;而 GO
可大量吸附 PVA 微胞,在自組裝的過程中形成棒狀結構。GO 與 PVA 組成的複合材
料已被證實可以增強其材料的機械性質,呈現高穩定的特性。此外,GO 能扮演光熱
效應轉換者,而奈米豌豆還可以載負大量的疏水性抗癌藥物:歐洲紫杉醇(Docetaxel,
DTX),化療藥物的包覆率也可以達七成以上,並且在雷射的刺激之下造成藥物釋放。
再者,奈米豌豆外修飾的乳鐵蛋白(Lf)更能進一步增加藥物載體的累積到 RG2 癌細
胞。在細胞實驗中,可以發現,結合標靶性光熱及化學協同治療對於癌細胞的毒殺
能力,比單獨化學治療強 2.4 倍,比光熱及化學協同治療強 1.6 倍。而在動物實驗
中,在照射進紅外光雷射 15 分鐘後,更可以摧毀癌細胞並抑制復發。因此,奈米豌
豆是一個有潛力的藥物傳輸平台,且具有光敏性與標靶性,並結合光熱及化學協同
治療功效,期許能在腫瘤治療或其他生醫領域有更多方面性的運用。
關鍵字: 標靶性光熱及化學協同治療、雙乳化法、氧化石墨烯、乳鐵蛋白、歐洲紫
杉醇
A novel photo-responsive lactoferrin (Lf)-coated nanopea that used as a photothermal agent with
pea-like structure was constructed by anchoring graphene oxide nanosheets on polymer surfactant
(polyvinyl alcohol, PVA) shell through double emulsion approach. These graphene oxide-PVA
based composites were confirmed that could enhance their mechanical performance for
nanocomposite. These nanopea can transport fully concealed hydrophobic anticancer drug
Docetaxel (DTX) (EE: 71.7%), in the core to be later unloaded by heat triggered by near-infrared
irradiation. Furthermore, Lf- modified nanopea could significantly enhance the accumulation of
nanopea in RG2 cells and successfully deliver drugs into targeted cancer cells. The experiment of
in vitro, targeted chemophotothermal therapy by Lf-Nanopea/DTX performs 2.4-fold and 1.6-fold
higher therapeutic efficacy than single chemotherapy and chemophotothermal therapy, respectively.
In vivo, following a single 15 min NIR irradiation, the photo-chemo-thermal therapy of nanopea
eradicates tumor cells not only in the light-treating area but also widely light-omitted tumor cells,
overcoming the cancer cells recurrence due to efficient cell killing efficacy. These results
demonstrate that the nanopea is a potential new drug delivery platform for local-targeting, photo-
responsive, combined chemotherapy/hyperthermia for tumor treatment and other biomedical
applications.
Key words: targeted chemophotothermal therapy, double emulsion method, graphene oxide,
lactoferrin, Docetaxel
iii

Contents
中文摘要 ............................................................................................................................... i
Abstract ............................................................................................................................... ii
Contents ............................................................................................................................ iii
LIST OF SCHEMES .......................................................................................................... v
LIST OF TABLES ............................................................................................................. vi
LIST OF FIGURES ......................................................................................................... vii
Chapter 1 Introduction ...................................................................................................... 1
Chapter 2 Literature Review and Theory ....................................................................... 4
2.1 Nanoparticles for cancer therapy ........................................................................... 4
2.1.1 Nanoparticle size ......................................................................................... 5
2.1.2 Nanoparticle shape ...................................................................................... 6
2.1.3 Nanoparticle surface chemistry ................................................................... 8
2.1.4 Graphene oxide on cancer therapy .............................................................. 9
2.2 Graphene-based nanocomposites for drugs and genes delivery .......................... 10
2.3 Graphene-based nanocomposites for photothermal therapy ................................ 16
2.4 Graphene-based nanocomposites for combined chemo-photothermal therapy ... 23
Chapter 3 Materials and methods .................................................................................. 31
3.1 Material ................................................................................................................ 31
3.2 Apparatus ............................................................................................................. 33
3.3 Method ................................................................................................................. 34
3.3.1 Synthesis of Graphene oxide .................................................................... 34
3.3.2 Synthesis of Lf-modified Nanopea ........................................................... 34
3.3.3 Characterization ........................................................................................ 35
3.3.4 Photothermal heating effect of nanopea .................................................... 36
3.3.5 Drug loading and drug encapsulation efficiency ...................................... 36
3.3.6 In Vitro Release ......................................................................................... 36
3.3.7 Cell culture ................................................................................................ 37
3.3.8 Cell vability assay ..................................................................................... 37
3.3.9 Cellular uptake of nanopea capsules ......................................................... 38
3.3.10 Targeting ability of the Lf-Nanopea capsules was quantified by flow
cytometry ........................................................................................................... 38
3.3.11 In vitro Live/Dead cell imaging after NIR irradiation ............................ 39
3.3.12 In vivo experiments ................................................................................. 39
Chapter 4 Results and Discussions ................................................................................. 41
4.1 Synthesis and characterization of nanopea capsule ............................................. 41
4.2 Photothermal effect, drug loading capacity and NIR light-triggered drug release of nanopea capsules ................................................................................................... 48
4.3 Cytotoxicity and cell uptake of nanopea capsules ............................................... 54
4.4 In vitro chemo-photothermal therapy of nanopea capsules ................................. 57
4.5 In vivo animal experiment ................................................................................... 61
Chapter 5 Conclusions ..................................................................................................... 69
Reference........................................................................................................................... 70
[1] D. Jaque, L. M. Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. Plaza, E.
M. Rodríguez, J. G. Solé, Nanoscale 2014, 6, 9494.
[2] G. von Maltzahn, J.-H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S.
N. Bhatia, Cancer research 2009, 69, 3892.
[3] L. R. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N.
Halas, J. West, Proceedings of the National Academy of Sciences 2003, 100, 13549.
[4] H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu, F. Tang, Angewandte Chemie 2011,
123, 921.
[5] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia,
X. Li, Nano letters 2007, 7, 1318.
[6] M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C.
Kim, K. H. Song, A. G. Schwartz, Nature materials 2009, 8, 935.
[7] H. K. Moon, S. H. Lee, H. C. Choi, ACS nano 2009, 3, 3707.
[8] S. Ghosh, S. Dutta, E. Gomes, D. Carroll, R. D’Agostino Jr, J. Olson, M. Guthold,
W. H. Gmeiner, ACS nano 2009, 3, 2667.
[9] X. Liu, H. Tao, K. Yang, S. Zhang, S.-T. Lee, Z. Liu, Biomaterials 2011, 32, 144.
[10] J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, H.
Dai, Nano Res. 2010, 3, 779.
[11] K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Nano letters 2010, 10, 3318.
[12] J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D.
Vinh, H. Dai, Journal of the American Chemical Society 2011, 133, 6825.
[13] M. Li, X. Yang, J. Ren, K. Qu, X. Qu, Advanced Materials 2012, 24, 1722.
[14] X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 2008, 319, 1229.
[15] S.-H. Hu, S.-Y. Chen, X. Gao, ACS nano 2012, 6, 2558.
[16] S. H. Hu, B. J. Liao, C. S. Chiang, P. J. Chen, I. W. Chen, S. Y. Chen, Advanced
Materials 2012, 24, 3627.
[17] S. Zhou, J. Fan, S. S. Datta, M. Guo, X. Guo, D. A. Weitz, Advanced Functional
Materials 2013, 23, 5925.
[18] M. H. Lee, K. C. Hribar, T. Brugarolas, N. P. Kamat, J. A. Burdick, D. Lee,
Advanced Functional Materials 2012, 22, 131.
[19] S. U. Pickering, Journal of the Chemical Society, Transactions 1907, 91, 2001.
[20] B. P. Binks, T. S. Horozov, Colloidal particles at liquid interfaces, Cambridge
University Press, 2006.
[21] C. Miesch, I. Kosif, E. Lee, J. K. Kim, T. P. Russell, R. C. Hayward, T. Emrick,
Angewandte Chemie International Edition 2012, 51, 145.
[22] Y. Wang, K. Wang, J. Zhao, X. Liu, J. Bu, X. Yan, R. Huang, Journal of the
American Chemical Society 2013, 135, 4799.
[23] Y. A. Suzuki, V. Lopez, B. Lönnerdal, Cellular and Molecular Life Sciences 2005,
62, 2560.
[24] G. Gonçalves, M. Vila, M. T. Portolés, M. Vallet‐Regi, J. Gracio, P. A. A. Marques,
Advanced healthcare materials 2013, 2, 1072.
[25] R. A. Petros, J. M. DeSimone, Nature Reviews Drug Discovery 2010, 9, 615.
[26] S. D. Conner, S. L. Schmid, Nature 2003, 422, 37.
[27] H. Hillaireau, P. Couvreur, Cellular and Molecular Life Sciences 2009, 66, 2873.
[28] M. Ekkapongpisit, A. Giovia, C. Follo, G. Caputo, C. Isidoro, International Journal
of Nanomedicine 2012, 7, 4147.
[29] D. X. Liu, A. Mori, L. Huang, Biochimica Et Biophysica Acta 1992, 1104, 95.
[30] A. Schadlich, H. Caysa, T. Mueller, F. Tenambergen, C. Rose, A. Gopferich, J.
Kuntsche, K. Mader, Acs Nano 2011, 5, 8710.
[31] S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, W. C. W. Chan, Nano Letters
2009, 9, 1909.
[32] T. Cedervall, I. Lynch, M. Foy, T. Berggad, S. C. Donnelly, G. Cagney, S. Linse, K.
A. Dawson, Angewandte Chemie-International Edition 2007, 46, 5754.
[33] M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K. A. Dawson, Proceedings
of the National Academy of Sciences of the United States of America 2008, 105, 14265.
[34] H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V.
Frangioni, Nature Biotechnology 2007, 25, 1165.
[35] W. Jiang, B. Y. S. Kim, J. T. Rutka, W. C. W. Chan, Nature Nanotechnology 2008, 3,
145.
[36] J. W. Yoo, N. Doshi, S. Mitragotri, Macromolecular rapid communications 2010, 31,
142.
[37] S. E. Gratton, P. A. Ropp, P. D. Pohlhaus, J. C. Luft, V. J. Madden, M. E. Napier, J.
M. DeSimone, Proceedings of the National Academy of Sciences 2008, 105, 11613.
[38] R. Vácha, F. J. Martinez-Veracoechea, D. Frenkel, Nano letters 2011, 11, 5391.
[39] S. Barua, J.-W. Yoo, P. Kolhar, A. Wakankar, Y. R. Gokarn, S. Mitragotri,
Proceedings of the National Academy of Sciences 2013, 110, 3270.
[40] C. Bussy, H. Ali-Boucetta, K. Kostarelos, Accounts of Chemical Research 2013, 46,
692.
[41] J.-W. Yoo, N. Doshi, S. Mitragotri, Macromolecular Rapid Communications 2010,
31, 142.
[42] V. K. Kodali, W. Roos, J. P. Spatz, J. E. Curtis, Soft Matter 2007, 3, 337.
[43] X. Huang, X. Teng, D. Chen, F. Tang, J. He, Biomaterials 2010, 31, 438.
[44] Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D. E. Discher, Nat Nano 2007, 2, 249.
[45] K. Zhang, H. Fang, Z. Chen, J.-S. A. Taylor, K. L. Wooley, Bioconjugate Chemistry
2008, 19, 1880.
[46] Y. Tabata, Y. Ikada, Biomaterials 1988, 9, 356.
[47] R. F. Landel, L. E. Nielsen, Mechanical properties of polymers and composites,
CRC Press, 1993.
[48] J.-W. Yoo, E. Chambers, S. Mitragotri, Current pharmaceutical design 2010, 16,
2298.
[49] S. M. Moghimi, A. C. Hunter, J. C. Murray, Pharmacological reviews 2001, 53, 283.
[50] R.-L. Hong, C.-J. Huang, Y.-L. Tseng, V. F. Pang, S.-T. Chen, J.-J. Liu, F.-H. Chang,
Clinical Cancer Research 1999, 5, 3645.
[51] L. Song, Q. Ahkong, Q. Rong, Z. Wang, S. Ansell, M. Hope, B. Mui, Biochimica et
Biophysica Acta (BBA)-Biomembranes 2002, 1558, 1.
[52] S.-D. Li, L. Huang, Journal of controlled release: official journal of the Controlled
Release Society 2010, 145, 178.
[53] P. Erbacher, T. Bettinger, P. Belguise‐Valladier, S. Zou, J. L. Coll, J. P. Behr, J. S.
Remy, The journal of gene medicine 1999, 1, 210.
[54] E. Tasciotti, X. W. Liu, R. Bhavane, K. Plant, A. D. Leonard, B. K. Price, M. M. C.
Cheng, P. Decuzzi, J. M. Tour, F. Robertson, M. Ferrari, Nature Nanotechnology 2008, 3,
151.
[55] Z. Liu, J. T. Robinson, X. Sun, H. Dai, Journal of the American Chemical Society
2008, 130, 10876.
[56] R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. Li, W.
Kim, P. J. Utz, H. Dai, Proceedings of the National Academy of Sciences 2003, 100, 4984.
[57] Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, ACS nano 2007, 1, 50.
[58] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res.
2008, 1, 203.
[59] C. Wang, J. Li, C. Amatore, Y. Chen, H. Jiang, X. M. Wang, Angewandte Chemie
International Edition 2011, 50, 11644.
[60] X. Fan, G. Jiao, L. Gao, P. Jin, X. Li, Journal of Materials Chemistry B 2013, 1,
2658.
[61] V. K. Rana, M. C. Choi, J. Y. Kong, G. Y. Kim, M. J. Kim, S. H. Kim, S. Mishra, R.
P. Singh, C. S. Ha, Macromolecular Materials and Engineering 2011, 296, 131.
[62] H.-p. Li, L. Qin, Z.-d. Wang, S. Li, Research on Chemical Intermediates 2012, 38,
1421.
[63] S. Yan, J. Zhu, Z. Wang, J. Yin, Y. Zheng, X. Chen, European Journal of
Pharmaceutics and Biopharmaceutics 2011, 78, 336.
[64] M.-L. Chen, Y.-J. He, X.-W. Chen, J.-H. Wang, Bioconjugate chemistry 2013, 24, 387.
[65] Y.-Y. Jiang, C. Liu, M.-H. Hong, S.-J. Zhu, Y.-Y. Pei, Bioconjugate chemistry 2007,
18, 41.
[66] R. K. Huang, N. F. Steinmetz, C.-Y. Fu, M. Manchester, J. E. Johnson,
Nanomedicine 2011, 6, 55.
[67] H. Kim, D. Lee, J. Kim, T.-i. Kim, W. J. Kim, ACS nano 2013, 7, 6735.
[68] U. Dembereldorj, M. Kim, S. Kim, E.-O. Ganbold, S. Y. Lee, S.-W. Joo, Journal of
Materials Chemistry 2012, 22, 23845.
[69] C. Wang, S. Ravi, U. S. Garapati, M. Das, M. Howell, J. Mallela, S. Alwarappan, S.
S. Mohapatra, S. Mohapatra, Journal of Materials Chemistry B 2013, 1, 4396.
[70] K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, Biomaterials 2012, 33, 2206.
[71] D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, Cancer letters 2004,
209, 171.
[72] E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh,
J. F. McDonald, M. A. El-Sayed, Cancer letters 2008, 269, 57.
[73] X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Lasers in medical science
2008, 23, 217.
[74] D.-K. Lim, A. Barhoumi, R. G. Wylie, G. Reznor, R. S. Langer, D. S. Kohane, Nano
letters 2013, 13, 4075.
[75] S. H. Hu, Y. W. Chen, W. T. Hung, I. W. Chen, S. Y. Chen, Advanced Materials
2012, 24, 1748.
[76] X. Ma, H. Tao, K. Yang, L. Feng, L. Cheng, X. Shi, Y. Li, L. Guo, Z. Liu, Nano Res.
2012, 5, 199.
[77] C. Xu, D. Yang, L. Mei, Q. Li, H. Zhu, T. Wang, ACS applied materials & interfaces
2013, 5, 12911.
[78] Y. W. Chen, P. J. Chen, S. H. Hu, I. W. Chen, S. Y. Chen, Advanced Functional
Materials 2014, 24, 451.
[79] A. Kumar, R. F. Lobo, N. J. Wagner, Carbon 2005, 43, 3099.
[80] S. H. Hu, R. H. Fang, Y. W. Chen, B. J. Liao, I. W. Chen, S. Y. Chen, Advanced
Functional Materials 2014, 24, 4144.
[81] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B.
Alemany, W. Lu, J. M. Tour, ACS nano 2010, 4, 4806.
[82] S. G. Dashper, Y. Pan, P. D. Veith, Y.-Y. Chen, E. C. Toh, S. W. Liu, K. J. Cross, E.
C. Reynolds, Antimicrobial agents and chemotherapy 2012, 56, 1548.
[83] B. Shen, W. Zhai, D. Lu, J. Wang, W. Zheng, RSC Advances 2012, 2, 4713.
[84] X. Zeng, W. Tao, L. Mei, L. Huang, C. Tan, S.-S. Feng, Biomaterials 2013, 34, 6058.
[85] K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'Homme, I. A. Aksay, R. Car,
Nano letters 2008, 8, 36.
[86] I. Calizo, A. Balandin, W. Bao, F. Miao, C. Lau, Nano letters 2007, 7, 2645.
[87] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano
letters 2007, 7, 238.
[88] Z. Su, L. Xing, Y. Chen, Y. Xu, F. Yang, C. Zhang, Q. Ping, Y. Xiao, Molecular
pharmaceutics 2014, 11, 1823.
[89] L. Liu, A. H. Barber, S. Nuriel, H. D. Wagner, Advanced Functional Materials 2005,
15, 975.
[90] S. Some, A.-R. Gwon, E. Hwang, G.-h. Bahn, Y. Yoon, Y. Kim, S.-H. Kim, S. Bak, J.
Yang, D.-G. Jo, Scientific reports 2014, 4.
[91] R. F. Barth, B. Kaur, Journal of neuro-oncology 2009, 94, 299.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
2. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
3. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
4. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
5. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
6. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
7. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
8. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
9. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
10. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
11. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
12. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
13. 外泌體修飾磁性奈米粒子透過對流增強遞送系統應用於腦瘤治療
14. 具光熱免疫療法之巨噬細胞外泌體裝飾金/銀殼核三角奈米板結合檢查點阻斷劑應用於抑制轉移性腫瘤
15. 石墨烯奈米複合材料之穿透藥物傳遞應用於深度腦部腫瘤治療
 
* *