帳號:guest(18.223.206.144)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳秉鴻
作者(外文):Chen, Ping Hung
論文名稱(中文):發展濃度梯度產生晶片進行微量金屬之定量分析
論文名稱(外文):Development of concentration gradient generation microchip for quantitative determination of trace metals
指導教授(中文):孫毓璋
指導教授(外文):Sun, Yuh Chang
口試委員(中文):楊末雄
李承龍
楊詔凱
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:102012514
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:82
中文關鍵詞:微量金屬濃度梯度產生裝置微全分析系統微流體紙基材分析裝置
外文關鍵詞:trace metalsconcentration gradient generationmicro-total analysis systemmicrofluidic paper-based analytical devices
相關次數:
  • 推薦推薦:0
  • 點閱點閱:73
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
隨著工業技術的革新,各式儀器分析方法開始著眼於分析效能的提升與設備功能的再進化,儘管大幅提升現今金屬元素檢測方法的準確性,但繁瑣的實驗步驟以及昂貴的檢測儀器都將耗費大量的人力、時間以及金錢。因此,現場即時檢測 (on-site) 甚至是強調居家檢測的分析概念開始受到矚目,致使部分分析技術也逐步朝向微型化、自動化甚或商業化發展。然而在進行分析檢測時,檢測試劑的配製及檢量線的建立仍是無可避免的步驟。為此本研究將針對上述的不足,並希望以「微全分析系統」的概念為基礎,藉由微流體系統設計簡化檢量線建立所需操作流程,進而開發出一套適用性高且操作簡便的分析平台。
而根據實驗結果,本論文設計出兩套分析檢測系統,第一部分為利用簡單便宜的壓克力材料製作出第一代濃度梯度產生裝置,作為檢量線建立之用,並於應用上直接與市售的檢測套件相結合,來證明本晶片在於市場中的應用價值;第二部分則是進一步援引近十年來興起的微流體紙基材分析裝置 (microfluidic paper-based analytical devices, -PADs) 技術,僅需利用一張濾紙就能輕鬆完成第二代濃度梯度產生裝置的製作,不僅解決了第一代晶片製程繁瑣以及欠缺進樣驅動力的問題,更在結合比色法及智慧型手機應用程式後,應用於檢測地下水中的六價鉻濃度。
Till date, as the technical innovations in industry, several instrument analytical methods have started in improvement of analytical efficiency and device function. However, the more accuracy we improved in the determination of metal elements result in the more complicated experimental procedures and expensive instruments in each method. What’s more, that will cost us much more manpower, time and money. Thus, the idea of on-site or even home determinations start to stand out and contribute to parts of analytical technologies developing towards miniaturization, automation and commercialization. However, when we in the analytical determination process, we still cannot eliminate the procedure to prepare the reagent and the calibration curve we need. Here, based on the idea of “miniaturized total analysis system”, this study proposed an innovative strategy for simplifying the procedure of calibration curve setting to compensate for the deficient we just mentioned above. With this novel microfluidic analytical system, we can build up a high-adaptable analytical platform in an easier way.
Based on the experimental results, we have developed two analytical determination systems. For the first analytical system, we use poly(methyl methacrylate), which is cheap and easy to fabricate, as materials to build up the first-generation of concentration gradient generator Then, we couple the commercial kit with the developed microchip to approve our ability to become commercialized. For the second analytical system, we apply the idea of “microfluidic paper-based analytical devices, -PADs” to our microchip which is very popular in this decade. Only with a piece of paper, we can build up the second-generation of concentration gradient generator easily. The second-generation microchip not only solve the problems in the first generation, like complicated fabrication process and lack of injector driving force, but also couple the colorimetric method and smartphone application to determine the concentration of chromium (Ⅵ) in the groundwater.
摘要 II
Abstract III
謝誌 V
總目錄 X
圖目錄 XII
表目錄 XV
第一章、 導論 1
1.1 飲用水中微量金屬元素之重要性 1
1.2 現行金屬元素檢測技術的發展及遭遇困境 3
1.3 研究動機與策略 5
1.4 參考文獻 8
第二章、 第一代濃度梯度檢測系統之開發 9
2.1 前言 9
2.2 實驗部分 13
2.2.1 儀器設備 13
2.2.2 試劑與材料 13
2.2.3 晶片製程 14
2.3 結果與討論 15
2.3.1 第一代濃度梯度生成晶片設計理念 15
2.3.2 晶片操作條件最適化探討 18
2.3.2.1 操作流速對濃度梯度建立之影響 18
2.3.2.2 流道構型對濃度梯度建立之影響 21
2.3.2.3 流道縱深對濃度梯度建立之影響 28
2.3.3 晶片分析效能評估 30
2.4 小結 32
2.5 未來與發展 34
2.6 參考文獻 39
第三章、 第二代濃度梯度檢測系統之開發 41
3.1 前言 41
3.2 實驗部分 47
3.2.1 儀器設備 47
3.2.2 試劑與材料 47
3.2.3 晶片製程 48
3.2.4 真實樣品分析 49
3.3 結果與討論 50
3.3.1 濾紙型晶片製程之探討 50
3.3.2 晶片操作條件最適化探討 56
3.3.2.1 流道構型對濃度梯度建立之影響 56
3.3.2.2 流道寬度對濃度梯度建立之影響 60
3.3.3 智慧型手機檢測系統之整合 61
3.3.4 晶片分析效能評估 71
3.4 小結 74
3.5 參考文獻 76
第四章、 結語與未來展望 78
1. Commissioned Corps of the U.S. Public Health Service, http://www.usphs.gov/, 2016.02.26.
2. United States Environmental Protection Agency, http://water.epa.gov/lawsregs/rulesregs/sdwa/index.cfm, 2016.02.26.
3. United States Environmental Protection Agency, http://water.epa.gov/drink/contaminants/index.cfm, 2016.02.26.
4. 周嘉華, 倪莉, 上海科技教育出版社, 2001, 諾貝爾百年鑑 化學中的火眼金睛 現代分析技術
5. Chandrasekaran, K., Karunasagar, D., and Arunachalam, J., Analytical Methods, 2011, 3, 2140-2147.
6. Chandrasekaran, K., Karunasagar, D., and Arunachalam, J., Journal of Analytical Atomic Spectrometry, 2013, 28, 142-149.
7. Shih, T.-T., Tseng, W.-Y., Tsai, K.-H., Chen, W.-Y., Tsai, M.-W., and Sun, Y.-C., Microchemical Journal, 2011, 99, 260-266.
8. Su, S., Chen, B., He, M., Xiao, Z., and Hu, B., Journal of Analytical Atomic Spectrometry, 2014, 29, 444-453.
9. Sánchez Rojas, F., Bosch Ojeda, C., and Cano Pavón, J.M., Microchemical Journal, 2010, 94, 7-13.
10. Khan, N., Choi, J.Y., Nho, E.Y., Jamila, N., Habte, G., Hong, J.H., Hwang, I.M., and Kim, K.S., Food Chemistry, 2014, 158, 200-206.
11. De Marco, R., Clarke, G., and Pejcic, B., Electroanalysis, 2007, 19, 1987-2001.
12. 熊同銘, 劉鎮山, 環境分析學會, 2012, 環境分析 - 原理與應用 光譜分析法
1. Manz, A., Graber, N., and Widmer, H.M., Sens. Actuator B-Chem., 1990, 1, 244-248.
2. Jeon, N.L., Dertinger, S.K.W., Chiu, D.T., Choi, I.S., Stroock, A.D., and Whitesides, G.M., Langmuir, 2000, 16, 8311-8316.
3. Walker, G.M., Sai, J., Richmond, A., Stremler, M., Chung, C.Y., and Wikswo, J.P., Lab Chip, 2005, 5, 611-618.
4. Zheng, G., Wang, Y., and Qin, J., Anal Bioanal Chem, 2012, 404, 3061-3069.
5. Zaari, N., Rajagopalan, P., Kim, S.K., Engler, A.J., and Wong, J.Y., Advanced Materials, 2004, 16, 2133-2137.
6. Burdick, J.A., Khademhosseini, A., and Langer, R., Langmuir, 2004, 20, 5153-5156.
7. Harrison, D.J., Fluri, K., Seiler, K., Fan, Z.H., Effenhauser, C.S., and Manz, A., Science, 1993, 261, 895-897.
8. Harrison, D.J., Manz, A., Fan, Z.H., Ludi, H., and Widmer, H.M., Anal. Chem., 1992, 64, 1926-1932.
9. He, B., Tait, N., and Regnier, F., Anal. Chem., 1998, 70, 3790-3797.
10. Ramsey, R.S. and Ramsey, J.M., Anal. Chem., 1997, 69, 1174-1178.
11. Klank, H., Kutter, J.P., and Geschke, O., Lab Chip, 2002, 2, 242-246.
12. Dertinger, S.K.W., Chiu, D.T., Jeon, N.L., and Whitesides, G.M., Anal. Chem., 2001, 73, 1240-1246.
13. Nguyen, N.T. and Wu, Z.J., Micromech. Microeng., 2005, 15, R1-R16.
14. Glasgow, I. and Aubry, N., Lab Chip, 2003, 3, 114-120.
15. Lu, L.-H., Ryu, K.S., and Liu, C.J., Microelectromech. Syst., 2002, 11, 462-469.
16. Bessoth, F.G. and Manz, A., Anal. Commun., 1999, 36, 213-215.
17. He, B., Burke, B.J., Zhang, X., Zhang, R., and Regnier, F.E., Anal. Chem., 2001, 73, 1942-1947.
18. Wang, H., Iovenitti, P., Harvey, E., and Masood, S., Smart Mater. Struct., 2002, 11, 662-667.
19. Lu, Y., Shi, W.W., Qin, J.H., and Lin, B.C., Electrophoresis, 2009, 30, 579-582.
1. Blow, N., Nat Meth, 2009, 6, 683-686.
2. 周嘉華 and 倪莉, 上海科技教育出版社, 2001, 諾貝爾百年鑑 化學中的火眼金睛 現代分析技術
3. Yamada, K., Henares, T.G., Suzuki, K., and Citterio, D., Angewandte Chemie International Edition, 2015, 54, 5294-5310.
4. 溫曉薇, Food nano-technology, 奈米科技在食品檢測的應用
5. Liu, B., Du, D., Hua, X., Yu, X.-Y., and Lin, Y., Electroanalysis, 2014, 26, 1214-1223.
6. Jones, G. and Kraft, A., Business History, 2004, 46, 100-122.
7. Martinez, A.W., Phillips, S.T., Butte, M.J., and Whitesides, G.M., Angewandte Chemie International Edition, 2007, 46, 1318-1320.
8. Martinez, A.W., Phillips, S.T., Wiley, B.J., Gupta, M., and Whitesides, G.M., Lab Chip, 2008, 8, 2146-2150.
9. Cate, D.M., Adkins, J.A., Mettakoonpitak, J., and Henry, C.S., Anal. Chem., 2015, 87, 19-41.
10. Yagoda, H., Industrial and Engineering Chemistry, 1937, 9, 79-82.
11. Lu, Y., Shi, W., Jiang, L., Qin, J., and Lin, B., Electrophoresis, 2009, 30, 1497-1500.
12. Carrilho, E., Martinez, A.W., and Whitesides, G.M., Anal. Chem., 2009, 81, 7091-7095.
13. Rattanarat, P., Dungchai, W., Cate, D.M., Siangproh, W., Volckens, J., Chailapakul, O., and Henry, C.S., Analytica Chimica Acta, 2013, 800, 50-55.
14. Dertinger, S.K.W., Chiu, D.T., Jeon, N.L., and Whitesides, G.M., Anal. Chem., 2001, 73, 1240-1246.
15. Wang, X., Hagen, J.A., and Papautsky, I., Biomicrofluidics, 2013, 7, 014-017.
16. Ge, L., Yu, J., Ge, S., and Yan, M., Anal Bioanal Chem, 2014, 406, 5613-5630.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用Neutralizer-(micro-column)-ICP-MS連線系統測定高濃度酸中超微量雜質元素之分析研究
2. 利用批次及離體模式進行online HPLC-UV/nano-TiO2/HCOOH PCRD-ICP-MS系統在自然水樣及尿液中連線測定硒物種之研究
3. 磁性奈米粒子及其複合材料之製備應用與氧化鋅奈米粒子細胞毒性之研究
4. 建立HPLC-UV/nano-TiO2-ICP-MS連線系統進行尿液中汞物種之分析研究
5. 開發PVC beads packed micro-column ICP-MS連線系統進行高鹽基質樣品中微量元素的分析研究
6. 晶片型固相萃取技術開發及其在微量元素分析上的應用
7. 活體動物體內量子點及鎘離子動態變化連線分析系統的開發與應用
8. 建立線上HPLC-Photocatalyst-Assisted Digestion and Vaporization Device (PADVD)-ICP-MS連線系統進行人體尿液中硒物種之分析研究
9. 開發Microdialysis-Desalter-ICP-MS連線分析系統進行活體動物肝臟中量子點穩定性及鎘元素拮抗作用之分析研究
10. 利用奈米金粒子訊號放大及磁性粒子分離技術進行核酸序列及汞離子之分析研究
11. Development of online HPLC-PMMA Chip-based Photo-Catalyst Reduction Device (PC2RD)-ICP-MS hyphenated system for determination of selenium species in nature water
12. Development of Microdialysis-In-tube SPE-ICP-MS System for the determination of trace elements in brain of anesthetized rat
13. 利用奈米探針技術搭配感應耦合電漿質譜儀建立高靈敏的病毒分型及定量分析研究
14. 建立開管式固相萃取晶片搭配感應耦合電漿質譜儀之連線分析系統進行高鹽基質微透析樣品中微量元素之分析研究
15. 建立Photocatalyst-Assisted Digestion-PMMA SPE-ICP-MS連線分析系統進行環境水樣中微量元素之分析研究
 
* *