|
1. Breast Cancer Facts & Figures 2013-2014. American Cancer Society. 2. McGuire, W.L., Breast cancer prognostic factors: evaluation guidelines. J Natl Cancer Inst, 1991. 83(3): p. 154-5. 3. Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000. 406(6797): p. 747-52. 4. Reis-Filho, J.S. and L. Pusztai, Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet, 2011. 378(9805): p. 1812-23. 5. Reis-Filho, J.S. and L. Pusztai, Gene expression profiling in breast cancer: classification, prognostication, and prediction. The Lancet. 378(9805): p. 1812-1823. 6. Spano, D., et al., Molecular networks that regulate cancer metastasis. Seminars in Cancer Biology, 2012. 22(3): p. 234-249. 7. Howlader N, et al., SEER Cancer Statistics Review, 1975-2011. National Cancer Institute. 8. Zhang, X.H.-F., et al., Metastasis Dormancy in Estrogen Receptor–Positive Breast Cancer. Clinical Cancer Research, 2013. 19(23): p. 6389-6397. 9. Tobin, N.P., et al., Molecular subtype and tumor characteristics of breast cancer metastases as assessed by gene expression significantly influence patient post-relapse survival. Annals of Oncology, 2015. 26(1): p. 81-88. 10. BREEN, L., L. O'DRISCOLL, and M. CLYNES, Gene Expression Microarray Technology: Some Applications in Lung Cancer Research. Cancer Genomics - Proteomics, 2006. 3(3-4): p. 197-202. 11. Lapointe, J., et al., Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(3): p. 811-816. 12. Loging, W.T., et al., Identifying Potential Tumor Markers and Antigens by Database Mining and Rapid Expression Screening. Genome Research, 2000. 10(9): p. 1393-1402. 13. Missiaglia, E., et al., Analysis of gene expression in cancer cell lines identifies candidate markers for pancreatic tumorigenesis and metastasis. International Journal of Cancer, 2004. 112(1): p. 100-112. 14. Dan, S., et al., An Integrated Database of Chemosensitivity to 55 Anticancer Drugs and Gene Expression Profiles of 39 Human Cancer Cell Lines. Cancer Research, 2002. 62(4): p. 1139-1147. 15. J. Ferlay, I.S., R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 2014. 16. Ferlay, J., et al., Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. European Journal of Cancer, 2013. 49: p. 1374-1403. 17. 2011年癌症登記報告. Health Promotion Administration, Ministry of Health and Welfare, 2014. 18. Ministry of Health and Welfare, Taiwan, 2014. 19. Weigelt, B., F.C. Geyer, and J.S. Reis-Filho, Histological types of breast cancer: How special are they? Molecular Oncology, 2010. 4(3): p. 192-208. 20. Organization, W.H., Tumours of the Breast and Female Genital Organs. Oxford University Press., 2003. 21. Elston, C.W. and I.O. Ellis, Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. C. W. Elston & I. O. Ellis. Histopathology 1991; 19; 403–410. Histopathology, 2002. 41(3a): p. 151-151. 22. Prat, A. and C.M. Perou, Deconstructing the molecular portraits of breast cancer. Molecular Oncology, 2011. 5(1): p. 5-23. 23. Burstein, H.J., et al., Adjuvant Endocrine Therapy for Women With Hormone Receptor–Positive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Focused Update. Journal of Clinical Oncology, 2014. 32(21): p. 2255-2269. 24. Targeted therapy for breast cancer. American Cancer Society. 25. Fisher, B., et al., Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. Journal of Clinical Oncology, 1988. 6(7): p. 1076-87. 26. Yu, K.-D., et al., Hazard of Breast Cancer-Specific Mortality among Women with Estrogen Receptor-Positive Breast Cancer after Five Years from Diagnosis: Implication for Extended Endocrine Therapy. The Journal of Clinical Endocrinology & Metabolism, 2012. 97(12): p. E2201-E2209. 27. Yang, X., et al., Role of EHD2 in migration and invasion of human breast cancer cells. Tumor Biology, 2015: p. 1-10. 28. Crowe JP, G.N., Hubay CA, et al., Estrogen receptor determination and long term survival of patients with carcinoma of the breast. . Surg Gynecol Obstet. , 1991. 173(4): p. 273-278. 29. Weigelt, B., J.L. Peterse, and L.J. van't Veer, Breast cancer metastasis: markers and models. Nat Rev Cancer, 2005. 5(8): p. 591-602. 30. Kennecke, H., et al., Metastatic Behavior of Breast Cancer Subtypes. Journal of Clinical Oncology, 2010. 28(20): p. 3271-3277. 31. Cardoso, F., et al., Locally recurrent or metastatic breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 2012. 23(suppl 7): p. vii11-vii19. 32. Yokota, J., Tumor progression and metastasis. Carcinogenesis, 2000. 21(3): p. 497-503. 33. Hanahan, D. and R.A. Weinberg, The Hallmarks of Cancer. Cell, 2000. 100(1): p. 57-70. 34. Naslavsky, N. and S. Caplan, C-terminal EH-domain-containing proteins: consensus for a role in endocytic trafficking, EH? Journal of Cell Science, 2005. 118(18): p. 4093-4101. 35. Richardson, C., et al., Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability. Oncogene, 0000. 23(2): p. 546-553. 36. Chang, A.-M., et al., STC1 expression is associated with tumor growth and metastasis in breast cancer. Clinical & Experimental Metastasis, 2014: p. 1-13. 37. Gupta, R.A., et al., Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010. 464(7291): p. 1071-1076. 38. Wiegmans, A.P., et al., Rad51 supports triple negative breast cancer metastasis. 2014. 2014. 39. Sørensen, K., et al., Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Research and Treatment, 2013. 142(3): p. 529-536. 40. Gökmen-Polar, Y., et al., Prognostic Impact of HOTAIR Expression is Restricted to ER-Negative Breast Cancers. Scientific Reports, 2015. 5: p. 8765. 41. Dumitrescu, R.G. and I. Cotarla, Understanding breast cancer risk - where do we stand in 2005? Journal of Cellular and Molecular Medicine, 2005. 9(1): p. 208-221. 42. Steffen, J., et al., Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. International Journal of Cancer, 2006. 119(2): p. 472-475. 43. King, M.-C., et al., Breast and Ovarian Cancer Risks Due to Inherited Mutations in BRCA1 and BRCA2. Science, 2003. 302(5645): p. 643-646. 44. Honrado, E., et al., Pathology and gene expression of hereditary breast tumors associated with BRCA1, BRCA2 and CHEK2 gene mutations. Oncogene, 2006. 25(43): p. 5837-5845. 45. van 't Veer, L.J., et al., Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002. 415(6871): p. 530-536. 46. Chang, H.Y., et al., Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(10): p. 3738-3743. 47. Wang, Y., et al., Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. The Lancet. 365(9460): p. 671-679. 48. Langfelder, P. and S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008. 9: p. 559-559. 49. Horvath, S., et al., Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proceedings of the National Academy of Sciences, 2006. 103(46): p. 17402-17407. 50. Miller, J., et al., Genes and pathways underlying regional and cell type changes in Alzheimer's disease. Genome Medicine, 2013. 5(5): p. 48. 51. Chou, W.-C., et al., Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer. BMC Genomics, 2014. 15(1): p. 1-12. 52. Angela P Presson, N.K.Y., Lora Bagryanova, Vei Mah, Mohammad Alavi, Erin L Maresh, Ayyappan K Rajasekaran, Lee Goodglick, David Chia and Steve Horvath, Protein expression based multimarker analysis of breast cancer samples. BMC Cancer 2011. 11(230). 53. Cline, M.S., et al., Integration of biological networks and gene expression data using Cytoscape. Nat. Protocols, 2007. 2(10): p. 2366-2382. 54. Bindea, G., et al., ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009. 25(8): p. 1091-1093. 55. Bindea, G., J. Galon, and B. Mlecnik, CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics, 2013. 29(5): p. 661-663. 56. Garnett, M.J., et al., Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 2012. 483(7391): p. 570-575. 57. Ciofani, M., et al., A Validated Regulatory Network for Th17 Cell Specification. Cell. 151(2): p. 289-303. 58. Jan Budczies*, C.D., Berit M Müller, Scarlet F Brockmöller, Frederick Klauschen, Balazs Györffy, Manfred Dietel, Christiane Richter-Ehrenstein, Ulrike Marten, Reza M Salek, Julian L Griffin, Mika Hilvo, Matej Orešič, Gert Wohlgemuth and Oliver Fiehn, Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue – a GC-TOFMS based metabolomics study. BMC Genomics, 2012. 13( 334). 59. Husi, H., et al., Proteome-Based Systems Biology Analysis of the Diabetic Mouse Aorta Reveals Major Changes in Fatty Acid Biosynthesis as Potential Hallmark in Diabetes Mellitus–Associated Vascular Disease. Circulation: Cardiovascular Genetics, 2014. 7(2): p. 161-170. 60. Hampel, H., et al., Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov, 2010. 9: p. 560 - 574. 61. Heider, A. and R. Alt, virtualArray: a R/bioconductor package to merge raw data from different microarray platforms. BMC Bioinformatics, 2013. 14(1): p. 75. 62. Rudy, J. and F. Valafar, Empirical comparison of cross-platform normalization methods for gene expression data. BMC Bioinformatics, 2011. 12(1): p. 467. 63. Walker, W.L., et al., Empirical Bayes accomodation of batch-effects in microarray data using identical replicate reference samples: application to RNA expression profiling of blood from Duchenne muscular dystrophy patients. BMC Genomics, 2008. 9: p. 494-494. 64. Scheller, J., et al., The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2011. 1813(5): p. 878-888. 65. Bradley, J.R., TNF-mediated inflammatory disease. The Journal of Pathology, 2008. 214(2): p. 149-160. 66. Hanahan, D. and Robert A. Weinberg, Hallmarks of Cancer: The Next Generation. Cell, 2011. 144(5): p. 646-674. 67. Bidwell, B.N., et al., Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med, 2012. 18(8): p. 1224-1231. 68. Kitamura, T., B.-Z. Qian, and J.W. Pollard, Immune cell promotion of metastasis. Nat Rev Immunol, 2015. 15(2): p. 73-86. 69. Sceneay, J., et al., Primary Tumor Hypoxia Recruits CD11b+/Ly6Cmed/Ly6G+ Immune Suppressor Cells and Compromises NK Cell Cytotoxicity in the Premetastatic Niche. Cancer Research, 2012. 72(16): p. 3906-3911. 70. Chow, A.Y., Cell Cycle Control by Oncogenes and Tumor Suppressors: Driving the Transformation of Normal Cells into Cancerous Cells. Nature Education, 2010. 3(9)(7). 71. Hartwell, L. and M. Kastan, Cell cycle control and cancer. Science, 1994. 266(5192): p. 1821-1828. 72. Takeshita, F., et al., Systemic Delivery of Synthetic MicroRNA-16 Inhibits the Growth of Metastatic Prostate Tumors via Downregulation of Multiple Cell-cycle Genes. Mol Ther, 2009. 18(1): p. 181-187. 73. Bonnet, M.-E., et al., Systemic delivery of sticky siRNAs targeting the cell cycle for lung tumor metastasis inhibition. Journal of Controlled Release, 2013. 170(2): p. 183-190. 74. Sarah Heerboth, G.H., Meghan Leary, Mckenna Longacre, Shannon Byler, Karolina Lapinska, Amber Willbanks and Sibaji Sarkar, EMT and tumor metastasis. Clinical and Translational Medicine, 2015. 4(6). 75. Chaffer, C.L. and R.A. Weinberg, A Perspective on Cancer Cell Metastasis. Science, 2011. 331(6024): p. 1559-1564. 76. Jeanine Pignatelli, D.A.T., Ronald P. Schmidt, and Christopher E. Turner, Hic-5 promotes invadopodia formation and invasion during TGF-β–induced epithelial–mesenchymal transition. J Cell Biol, 2012. 197(3): p. 421-437. 77. Wajant, H., The Role of TNF in Cancer, in Death Receptors and Cognate Ligands in Cancer, H. Kalthoff, Editor. 2009, Springer Berlin Heidelberg. p. 1-15. 78. Bates, R.C. and A.M. Mercurio, Tumor Necrosis Factor-α Stimulates the Epithelial-to-Mesenchymal Transition of Human Colonic Organoids. Molecular Biology of the Cell, 2003. 14(5): p. 1790-1800. 79. Michalaki, V., et al., Serum levels of IL-6 and TNF-[alpha] correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer, 2004. 90(12): p. 2312-2316. 80. Scott, K.A., et al., An Anti-Tumor Necrosis Factor-α Antibody Inhibits the Development of Experimental Skin Tumors. Molecular Cancer Therapeutics, 2003. 2(5): p. 445-451. 81. Nishizuka, Y., Protein kinase C and lipid signaling for sustained cellular responses. The FASEB Journal, 1995. 9(7): p. 484-96. 82. Liu, W.S. and C.A. Heckman, The Sevenfold Way of PKC Regulation. Cellular Signalling, 1998. 10(8): p. 529-542. 83. Gry Kalstad Lønne, L.C., Iris Omanovic Zahirovic, Göran Landberg, Karin Jirström and Christer Larsson, PKCα expression is a marker for breast cancer aggressiveness. Molecular Cancer 2010. 9: p. 76. 84. Ways, D.K., et al., MCF-7 breast cancer cells transfected with protein kinase C-alpha exhibit altered expression of other protein kinase C isoforms and display a more aggressive neoplastic phenotype. The Journal of Clinical Investigation, 1995. 95(4): p. 1906-1915. 85. Hubbard, A.K. and R. Rothlein, Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radical Biology and Medicine, 2000. 28(9): p. 1379-1386. 86. Buitrago, D., et al., Intercellular Adhesion Molecule-1 (ICAM-1) is Upregulated in Aggressive Papillary Thyroid Carcinoma. Annals of Surgical Oncology, 2012. 19(3): p. 973-980. 87. Maruo, Y., et al., ICAM-1 expression and the soluble ICAM-1 level for evaluating the metastatic potential of gastric cancer. International Journal of Cancer, 2002. 100(4): p. 486-490. 88. Terraube, V., I. Marx, and C.V. Denis, Role of von Willebrand factor in tumor metastasis. Thrombosis Research. 120: p. S64-S70. 89. L.M. Röhsig1, D.C.D., S.D. Stefani1, C.G. Castro Jr.1, I. Roisenberg2 and G. Schwartsmann, von Willebrand factor antigen levels in plasma of patients with malignant breast disease. Braz J Med Biol Res, 2001. 34(9): p. 1125-1129. 90. Xia Yang*, H.-j.S., Zhi-rong Li, Hao Zhang, Wei-jun Yang, Bing Ni and Yu-zhang Wu, Gastric cancer-associated enhancement of von Willebrand factor is regulated by vascular endothelial growth factor and related to disease severity. BMC Cancer, 2015. 15: p. 80. 91. Ferro, T., et al., Protein kinase C-α mediates endothelial barrier dysfunction induced by TNF-α. Vol. 278. 2000. L1107-L1117. 92. Arnott, C.H., et al., Tumour necrosis factor-alpha mediates tumour promotion via a PKC alpha- and AP-1-dependent pathway. Oncogene, 2002. 21(31): p. 4728-4738. 93. Min, J.-K., et al., TNF-Related Activation-Induced Cytokine Enhances Leukocyte Adhesiveness: Induction of ICAM-1 and VCAM-1 via TNF Receptor-Associated Factor and Protein Kinase C-Dependent NF-κB Activation in Endothelial Cells. The Journal of Immunology, 2005. 175(1): p. 531-540. 94. Zhang, P., et al., Melanoma upregulates ICAM-1 expression on endothelial cells through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα–p38–SP-1 pathway. The FASEB Journal, 2014. 28(11): p. 4591-4609. 95. Lorenzi, O., et al., Protein kinase C-δ mediates von Willebrand factor secretion from endothelial cells in response to vascular endothelial growth factor (VEGF) but not histamine. Journal of Thrombosis and Haemostasis, 2008. 6(11): p. 1962-1969. 96. Havemann, B.F.P.F.C.L.M.G.K.L.W.M.-L.Z.A.H.-P.E.M.K., Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 2000. 65: p. 287-300. 97. Alarmo, E.-L. and A. Kallioniemi, Bone morphogenetic proteins in breast cancer: dual role in tumourigenesis? Endocrine-Related Cancer, 2010. 17(2): p. R123-R139. 98. Alarmo, E.-L., et al., Bone morphogenetic protein 4 expression in multiple normal and tumor tissues reveals its importance beyond development. Mod Pathol, 2013. 26(1): p. 10-21. 99. Guo, D., J. Huang, and J. Gong, Bone morphogenetic protein 4 (BMP4) is required for migration and invasion of breast cancer. Molecular and Cellular Biochemistry, 2012. 363(1-2): p. 179-190. 100. Sorescu, G.P., et al., Bone Morphogenic Protein 4 Produced in Endothelial Cells by Oscillatory Shear Stress Stimulates an Inflammatory Response. Journal of Biological Chemistry, 2003. 278(33): p. 31128-31135. 101. Csiszar, A., et al., Differential proinflammatory and prooxidant effects of bone morphogenetic protein-4 in coronary and pulmonary arterial endothelial cells. Vol. 295. 2008. H569-H577. 102. Banerjee, S., S.K. Dhara, and M. Bacanamwo, Endoglin is a novel endothelial cell specification gene. Stem Cell Research, 2012. 8(1): p. 85-96. 103. Elzarrad, K., et al., Early incorporated endothelial cells as origin of metastatic tumor vasculogenesis. Clinical & Experimental Metastasis, 2009. 26(6): p. 589-598. 104. Liu G, R.Y., Effect of von Willebrand factor on the biological characteristics of colorectal cancer cells. Chinese Journal of Gastrointestinal Surgery, 2010. 13(8): p. 616-619.
|