|
[1] Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2):162-9. [2] Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. Journal of controlled release. 2012;161(2):377-88. [3] Jazwa A, Florczyk U, Jozkowicz A, Dulak J. Gene therapy on demand: Site specific regulation of gene therapy. Gene. 2013;525(2):229-38. [4] McCrudden CM, McCarthy HO. Cancer gene therapy–key biological concepts in the design of multifunctional non-viral delivery systems. Gene Therapy-Tools and Potential Applications. 2013:81-4. [5] Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. International journal of pharmaceutics. 2014;459(1):70-83. [6] Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012–an update. The journal of gene medicine. 2013;15(2):65-77. [7] Gao X, Kim K-S, Liu D. Nonviral gene delivery: what we know and what is next. The AAPS journal. 2007;9(1):E92-E104. [8] Elouahabi A, Ruysschaert J-M. Formation and Intracellular Trafficking of Lipoplexes and Polyplexes. Mol Ther. 2005;11(3):336-47. [9] Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews. 2012;64, Supplement(0):206-12. [10] Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nano. 2007;2(12):751-60. [11] Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin Pharmacol Ther. 2007;83(5):761-9. [12] Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews. 2011;63(3):136-51. [13] Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines. Journal of Drug Targeting. 2007;15(7/8):457-64. [14] Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer. 2007;120(12):2527-37. [15] Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release. 2008;126(3):187-204. [16] Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends in biotechnology. 2011;29(7):323-32. [17] Shi Y, Du J, Zhou L, Li X, Zhou Y, Li L, et al. Size-controlled preparation of magnetic iron oxidenanocrystals within hyperbranched polymers and their magnetofection in vitro. J Mater Chem. 2012;22(2):355-60. [18] Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, et al. Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T1 Magnetic Resonance Imaging Contrast Agents. Journal of the American Chemical Society. 2011;133(32):12624-31. [19] Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, et al. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of biomedical materials research Part A. 2007;80(2):333-41. [20] Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews. 2008;108(6):2064-110. [21] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995-4021. [22] Lee J-H, Kim J-w, Cheon J. Magnetic nanoparticles for multi-imaging and drug delivery. Molecules and cells. 2013;35(4):274-84. [23] Pankhurst Q, Thanh N, Jones S, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics. 2009;42(22):224001. [24] Plank C, Schillinger U, Scherer F, Bergemann C, Remy J-S, Krötz F, et al. The magnetofection method: using magnetic force to enhance gene delivery. Biological chemistry. 2003;384(5):737-47. [25] Schillinger U, Brill T, Rudolph C, Huth S, Gersting S, Krötz F, et al. Advances in magnetofection—magnetically guided nucleic acid delivery. Journal of Magnetism and Magnetic Materials. 2005;293(1):501-8. [26] Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection—Progress and prospects. Advanced drug delivery reviews. 2011;63(14):1300-31. [27] Hughes C, Galea-Lauri J, Farzaneh F, Darling D. Streptavidin Paramagnetic Particles Provide a Choice of Three Affinity-Based Capture and Magnetic Concentration Strategies for Retroviral Vectors. Mol Ther. 2001;3(4):623-30. [28] Mah C, Fraites JTJ, Zolotukhin I, Song S, Flotte TR, Dobson J, et al. Improved Method of Recombinant AAV2 Delivery for Systemic Targeted Gene Therapy. Mol Ther. 2002;6(1):106-12. [29] Gersting SW, Schillinger U, Lausier J, Nicklaus P, Rudolph C, Plank C, et al. Gene delivery to respiratory epithelial cells by magnetofection. The Journal of Gene Medicine. 2004;6(8):913-22. [30] Wang X, Zhou L, Ma Y, Li X, Gu H. Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection. Nano Res. 2009;2(5):365-72. [31] Gonzalez B, Ruiz-Hernandez E, Feito MJ, Lopez de Laorden C, Arcos D, Ramirez-Santillan C, et al. Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitrogene magnetofection. Journal of Materials Chemistry. 2011;21(12):4598-604. [32] Jenkins SI, Pickard MR, Granger N, Chari DM. Magnetic Nanoparticle-Mediated Gene Transfer to Oligodendrocyte Precursor Cell Transplant Populations Is Enhanced by Magnetofection Strategies. ACS Nano. 2011;5(8):6527-38. [33] Mulens V, Morales MdP, Barber DF. Development of magnetic nanoparticles for cancer gene therapy: A comprehensive review. International Scholarly Research Notices. 2013;2013. [34] Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiology and oncology. 2011;45(1):1-16. [35] Yuan C, An Y, Zhang J, Li H, Zhang H, Wang L, et al. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma. Nanotechnology. 2014;25(34):345101. [36] Ito A, Shinkai M, Honda H, Kobayashi T. Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 2001;8(9):649-54. [37] Porada CD, Almeida-Porada G. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Advanced drug delivery reviews. 2010;62(12):1156-66. [38] Pountos I, Giannoudis PV. Biology of mesenchymal stem cells. Injury. 2005;36(3):S8-S12. [39] Baksh D, Song L, Tuan R. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. Journal of cellular and molecular medicine. 2004;8(3):301-16. [40] Shah K. Mesenchymal stem cells engineered for cancer therapy. Advanced drug delivery reviews. 2012;64(8):739-48. [41] Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nature Reviews Immunology. 2008;8(9):726-36. [42] Le Blanc K, Ringdén O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation. 2005;11(5):321-34. [43] Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815-22. [44] Corsten MF, Shah K. Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. The lancet oncology. 2008;9(4):376-84. [45] Hu Y-L, Huang B, Zhang T-Y, Miao P-H, Tang G-P, Tabata Y, et al. Mesenchymal Stem Cells as a Novel Carrier for Targeted Delivery of Gene in Cancer Therapy Based on Nonviral Transfection. Molecular Pharmaceutics. 2012;9(9):2698-709. [46] Dwyer RM, Khan S, Barry FP, O’Brien T, Kerin MJ. Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Res Ther. 2010;1(3):25. [47] MacFarlane M, Williams AC. Apoptosis and disease: a life or death decision. EMBO reports. 2004;5(7):674-8. [48] Shi Y. A structural view of mitochondria-mediated apoptosis. Nature Structural & Molecular Biology. 2001;8(5):394-401. [49] Bremer E, van Dam G, Kroesen BJ, de Leij L, Helfrich W. Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends in Molecular Medicine. 2006;12(8):382-93. [50] Lavrik I, Golks A, Krammer PH. Death receptor signaling. Journal of cell science. 2005;118(2):265-7. [51] Wehrli P, Viard I, Bullani R, Tschopp J, French LE. Death Receptors in Cutaneous Biology and Disease. 2000;115(2):141-8. [52] Thorburn A. Death receptor-induced cell killing. Cellular signalling. 2004;16(2):139-44. [53] Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 0000;25(34):4798-811. [54] Wiley SR, Schooley K, Smolak PJ, Din WS, Huang C-P, Nicholl JK, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3(6):673-82. [55] Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of Apoptosis by Apo-2 Ligand, a New Member of the Tumor Necrosis Factor Cytokine Family. Journal of Biological Chemistry. 1996;271(22):12687-90. [56] Stuckey DW, Shah K. TRAIL on trial: preclinical advances in cancer therapy. Trends in molecular medicine. 2013;19(11):685-94. [57] Wu X, Lippman SM. An intermittent approach for cancer chemoprevention. Nature reviews Cancer. 2011;11(12):879-85. [58] LeBlanc H, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death & Differentiation. 2003;10(1):66-75. [59] Elmore S. Apoptosis: a review of programmed cell death. Toxicologic pathology. 2007;35(4):495-516. [60] Kelley SK, Ashkenazi A. Targeting death receptors in cancer with Apo2L/TRAIL. Current Opinion in Pharmacology. 2004;4(4):333-9. [61] Kelley SK, Harris LA, Xie D, DeForge L, Totpal K, Bussiere J, et al. Preclinical Studies to Predict the Disposition of Apo2L/Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in Humans: Characterization of in Vivo Efficacy, Pharmacokinetics, and Safety. Journal of Pharmacology and Experimental Therapeutics. 2001;299(1):31-8. [62] Xiang H, Nguyen CB, Kelley SK, Dybdal N, Escandón E. TISSUE DISTRIBUTION, STABILITY, AND PHARMACOKINETICS OF APO2 LIGAND/TUMOR NECROSIS FACTOR-RELATED APOPTOSIS-INDUCING LIGAND IN HUMAN COLON CARCINOMA COLO205 TUMOR-BEARING NUDE MICE. Drug Metabolism and Disposition. 2004;32(11):1230-8. [63] Kim TH, Youn YS, Jiang HH, Lee S, Chen X, Lee KC. PEGylated TNF-related apoptosis-inducing ligand (TRAIL) analogues: pharmacokinetics and antitumor effects. Bioconjugate chemistry. 2011;22(8):1631-7. [64] Lim SM, Kim TH, Jiang HH, Park CW, Lee S, Chen X, et al. Improved biological half-life and anti-tumor activity of TNF-related apoptosis-inducing ligand (TRAIL) using PEG-exposed nanoparticles. Biomaterials. 2011;32(13):3538-46. [65] Kim TH, Jiang HH, Park CW, Youn YS, Lee S, Chen X, et al. PEGylated TNF-related apoptosis-inducing ligand (TRAIL)-loaded sustained release PLGA microspheres for enhanced stability and antitumor activity. Journal of controlled release : official journal of the Controlled Release Society. 2011;150(1):63-9. [66] Kim TH, Jo YG, Jiang HH, Lim SM, Youn YS, Lee S, et al. PEG-transferrin conjugated TRAIL (TNF-related apoptosis-inducing ligand) for therapeutic tumor targeting. Journal of Controlled Release. 2012;162(2):422-8. [67] Kim I, Byeon HJ, Kim TH, Lee ES, Oh KT, Shin BS, et al. Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials. 2013;34(27):6444-53. [68] Bae S, Ma K, Kim TH, Lee ES, Oh KT, Park E-S, et al. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials. 2012;33(5):1536-46. [69] Lee ALZ, Dhillon SHK, Wang Y, Pervaiz S, Fan W, Yang YY. Synergistic anti-cancer effects via co-delivery of TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) and doxorubicin using micellar nanoparticles. Molecular BioSystems. 2011;7(5):1512-22. [70] Jiang HH, Kim TH, Lee S, Chen X, Youn YS, Lee KC. PEGylated TNF-related apoptosis-inducing ligand (TRAIL) for effective tumor combination therapy. Biomaterials. 2011;32(33):8529-37. [71] Mohr A, Lyons M, Deedigan L, Harte T, Shaw G, Howard L, et al. Mesenchymal stem cells expressing TRAIL lead to tumour growth inhibition in an experimental lung cancer model. Journal of cellular and molecular medicine. 2008;12(6b):2628-43. [72] Li L, Li F, Tian H, Yue W, Li S, Chen G. Human mesenchymal stem cells with adenovirus-mediated TRAIL gene transduction have antitumor effects on esophageal cancer cell line Eca-109. Acta biochimica et biophysica Sinica. 2014;46(6):471-6. [73] Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer research. 2009;69(10):4134-42. [74] Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor–related apoptosis-inducing ligand delivery for cancer therapy. Cancer research. 2010;70(9):3718-29. [75] Reagan MR, Seib FP, McMillin DW, Sage EK, Mitsiades CS, Janes SM, et al. Stem cell implants for cancer therapy: TRAIL-expressing mesenchymal stem cells target cancer cells in situ. Journal of breast cancer. 2012;15(3):273-82. [76] Loebinger M, Sage E, Davies D, Janes S. TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. British journal of cancer. 2010;103(11):1692-7. [77] Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences. 2009;106(12):4822-7. [78] Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109):917-21. [79] Redman S, Oldfield S, Archer C. Current strategies for articular cartilage repair. Eur Cell Mater. 2005;9(23-32):23-32. [80] James AW, Xu Y, Lee JK, Wang R, Longaker MT. Differential Effects of transforming growth factor-beta1 and-beta3 on chondrogenesis in posterofrontal cranial suture-derived mesenchymal cells in vitro. Plastic and reconstructive surgery. 2009;123(1):31. [81] Puetzer JL, Petitte JN, Loboa EG. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Engineering Part B: Reviews. 2010;16(4):435-44. [82] Ikeda T, Kawaguchi H, Kamekura S, Ogata N, Mori Y, Nakamura K, et al. Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. Journal of bone and mineral metabolism. 2005;23(5):337-40. [83] Chamberlain JR, Schwarze U, Wang P-R, Hirata RK, Hankenson KD, Pace JM, et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science. 2004;303(5661):1198-201. [84] L Santos J, Pandita D, Rodrigues J, P Pego A, L Granja P, Tomás H. Non-viral gene delivery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering and regeneration. Current gene therapy. 2011;11(1):46-57. [85] Madeira C, Mendes R, Ribeiro S, Boura J, Aires-Barros M, da Silva C, et al. Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy. BioMed Research International. 2010;2010. [86] Halim NSSA, Fakiruddin KS, Ali SA, Yahaya BH. A Comparative Study of Non-Viral Gene Delivery Techniques to Human Adipose-Derived Mesenchymal Stem Cell. International journal of molecular sciences. 2014;15(9):15044-60. [87] Song L, Chau L, Sakamoto Y, Nakashima J, Koide M, Tuan RS. Electric Field-Induced Molecular Vibration for Noninvasive, High-Efficiency DNA Transfection. Mol Ther. 2004;9(4):607-16. [88] Kim JA, Cho K, Shin MS, Lee WG, Jung N, Chung C, et al. A novel electroporation method using a capillary and wire-type electrode. Biosensors and Bioelectronics. 2008;23(9):1353-60. [89] Haleem-Smith H, Derfoul A, Okafor C, Tuli R, Olsen D, Hall DJ, et al. Optimization of high-efficiency transfection of adult human mesenchymal stem cells in vitro. Molecular biotechnology. 2005;30(1):9-19. [90] Hamm A, Krott N, Breibach I, Blindt R, Bosserhoff AK. Efficient transfection method for primary cells. Tissue engineering. 2002;8(2):235-45. [91] Dang JM, Leong KW. Natural polymers for gene delivery and tissue engineering. Advanced drug delivery reviews. 2006;58(4):487-99. [92] Luten J, van Nostrum CF, De Smedt SC, Hennink WE. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. Journal of Controlled Release. 2008;126(2):97-110. [93] Mastrobattista E, Bravo SA, van der Aa M, Crommelin DJ. Nonviral gene delivery systems: from simple transfection agents to artificial viruses. Drug Discovery Today: Technologies. 2005;2(1):103-9. [94] Kane NM, McRae S, Denning C, Baker AH. Viral and non-viral gene delivery and its role in pluripotent stem cell engineering. Drug Discovery Today: Technologies. 2009;5(4):e107-e15. [95] Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release. 2006;114(1):100-9. [96] Vanderbyl S, MacDonald G, Sidhu S, Gung L, Telenius A, Perez C, et al. Transfer and Stable Transgene Expression of a Mammalian Artificial Chromosome into Bone Marrow‐Derived Human Mesenchymal Stem Cells. Stem Cells. 2004;22(3):324-33. [97] Incani V, Tunis E, Clements BA, Olson C, Kucharski C, Lavasanifar A, et al. Palmitic acid substitution on cationic polymers for effective delivery of plasmid DNA to bone marrow stromal cells. Journal of Biomedical Materials Research Part A. 2007;81A(2):493-504. [98] Clements BA, Incani V, Kucharski C, Lavasanifar A, Ritchie B, Uludağ H. A comparative evaluation of poly-l-lysine-palmitic acid and Lipofectamine ™ 2000 for plasmid delivery to bone marrow stromal cells. Biomaterials. 2007;28(31):4693-704. [99] Gheisari Y, Soleimani M, Azadmanesh K, Zeinali S. Multipotent mesenchymal stromal cells: optimization and comparison of five cationic polymer-based gene delivery methods. Cytotherapy. 2008;10(8):815-23. [100] Yang F, Green J, Dinio T, Keung L, Cho S, Park H, et al. Gene delivery to human adult and embryonic cell-derived stem cells using biodegradable nanoparticulate polymeric vectors. Gene therapy. 2009;16(4):533-46. [101] Ahn HH, Lee MS, Cho MH, Shin YN, Lee JH, Kim KS, et al. DNA/PEI nano-particles for gene delivery of rat bone marrow stem cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;313:116-20. [102] Farrell L-L, Pepin J, Kucharski C, Lin X, Xu Z, Uludag H. A comparison of the effectiveness of cationic polymers poly-l-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC). European Journal of Pharmaceutics and Biopharmaceutics. 2007;65(3):388-97. [103] Ahn HH, Lee JH, Kim KS, Lee JY, Kim MS, Khang G, et al. Polyethyleneimine-mediated gene delivery into human adipose derived stem cells. Biomaterials. 2008;29(15):2415-22. [104] Clements BA, Bai J, Kucharski C, Farrell L-L, Lavasanifar A, Ritchie B, et al. RGD conjugation to polyethyleneimine does not improve DNA delivery to bone marrow stromal cells. Biomacromolecules. 2006;7(5):1481-8. [105] Saraf A, Hacker MC, Sitharaman B, Grande-Allen KJ, Barry MA, Mikos AG. Synthesis and conformational evaluation of a novel gene delivery vector for human mesenchymal stem cells. Biomacromolecules. 2008;9(3):818-27. [106] Santos JL, Oramas E, Pêgo AP, Granja PL, Tomás H. Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectors. Journal of Controlled Release. 2009;134(2):141-8. [107] Ye L, Haider HK, Esa WB, Law PK, Zhang W, Su L, et al. Nonviral vector-based gene transfection of primary human skeletal myoblasts. Experimental Biology and Medicine. 2007;232(11):1477-87. [108] Glick BR. Metabolic load and heterologous gene expression. Biotechnology advances. 1995;13(2):247-61. [109] Liao Z-X, Peng S-F, Ho Y-C, Mi F-L, Maiti B, Sung H-W. Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic acid). Biomaterials. 2012;33(11):3306-15. [110] Guo S, Huang Y, Zhang W, Wang W, Wei T, Lin D, et al. Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. Biomaterials. 2011;32(18):4283-92. [111] Liu W-M, Xue Y-N, He W-T, Zhuo R-X, Huang S-W. Dendrimer modified magnetic iron oxide nanoparticle/dna/pei ternary complexes: A novel strategy for magnetofection. Journal of Controlled Release. 2011;152, Supplement 1(0):e159-e60. [112] Namgung R, Singha K, Yu MK, Jon S, Kim YS, Ahn Y, et al. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials. 2010;31(14):4204-13. [113] Xie L, Jiang W, Nie Y, He Y, Jiang Q, Lan F, et al. Low aggregation magnetic polyethyleneimine complexes with different saturation magnetization for efficient gene transfection in vitro and in vivo. RSC Advances. 2013;3(45):23571-81. [114] Xie L, Jiang Q, He Y, Nie Y, Yue D, Gu Z. Insight into the efficient transfection activity of a designed low aggregated magnetic polyethyleneimine/DNA complex in serum-containing medium and the application in vivo. Biomaterials Science. 2015. [115] Choi SA, Hwang S-K, Wang K-C, Cho B-K, Phi JH, Lee JY, et al. Therapeutic efficacy and safety of TRAIL-producing human adipose tissue–derivedmesenchymal stem cells againstexperimental brainstem glioma. Neuro-Oncology. 2010. [116] Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, et al. Adipose-Derived Mesenchymal Stem Cells as Stable Source of Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Delivery for Cancer Therapy. Cancer Research. 2010;70(9):3718-29. [117] Menon LG, Kelly K, Yang HW, Kim S-K, Black PM, Carroll RS. Human Bone Marrow-Derived Mesenchymal Stromal Cells Expressing S-TRAIL as a Cellular Delivery Vehicle for Human Glioma Therapy. STEM CELLS. 2009;27(9):2320-30. [118] Udenfriend S. Formation of Hydroxyproline in Collagen. Science. 1966;152(3727):1335-40. [119] Park K, Yang J-A, Lee M-Y, Lee H, Hahn SK. Reducible Hyaluronic Acid–siRNA Conjugate for Target Specific Gene Silencing. Bioconjugate chemistry. 2013;24(7):1201-9. [120] Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release. 2011;152(1):2-12. [121] Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials. 2009;30(12):2180-98.
|