帳號:guest(18.225.56.222)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林宜潔
作者(外文):Lin, I Chieh
論文名稱(中文):磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
論文名稱(外文):Magnetic Nanocapsules with Shell Modification for Controlled Hydrophobic Drug Delivery and Enhanced Cancer Therapy
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):黃郁棻
張建文
林宗宏
許馨云
口試委員(外文):Huang, Yu-Fen
Chang, Chien-Wen
Lin, Zong-Hong
Hsu, Hsin-Yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:102012501
出版年(民國):104
畢業學年度:104
語文別:英文
論文頁數:100
中文關鍵詞:奈米氧化鐵紫杉醇雙重藥物磁導引生熱標靶治療
外文關鍵詞:SPIONPaclitaxelDual DrugMagnetic HyperthermiaTargeting Therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:428
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
癌症治療是生物醫學領域的重要研究方向,由於受限於癌細胞種類及抗癌藥物的特性,以往在癌症的化療和放射治療上有一定的難度,然而,近年來學術界已有不少結合奈米粒子藥物表面改質的研究,包括有效加強目前抗癌藥物的治療效果及降低副作用等。本論文使用生物相容性佳的奈米及高分子生醫材料進行實驗,結合了標靶(targeting)和磁導引(magnetic guiding)的特性,開發出多功能用途的奈米殼核膠囊,並佐以雙重藥物釋放的功能,用於加強癌症治療,以期降低化療副作用及提升療效。
論文第一部分為磁性奈米殼核膠囊(Nanocapsule)的合成與表面特性對癌細胞與動物腫瘤累積的研究。首先,以熱裂解法合成高產量的奈米氧化鐵:經由控制升溫速率可得到不同粒徑的產物,在實驗最佳化條件下合成出的氧化鐵約為10奈米,可穩定分布於油相溶液中,藉由磁性分析得知該奈米粒子為超順磁性奈米氧化鐵(Superparamagnetic Iron Oxide Nanoparticles, SPION)。磁性奈米殼核膠囊(Nanocapsule)的製備乃以聚乙二醇(Poly vinyl alcohol,PVA)作為介面活性劑,利用雙乳化步驟將油相氧化鐵形成奈米殼層結構並包覆油相藥物紫杉醇(Paclitaxel,PTX) 及經環狀醣類Beta-cyclodextrin (CD)修飾的水相紫杉醇(PTX-CD)。在合成過程中,比較只有PVA及含PVA修飾PEG-PLGA後的載體特性,發現使用分子量25,000 g/mol的PVA皆可以形成中空球結構,而利用PEG-PLGA合成的載體表面形貌較為平滑,此外,由電子顯微鏡(SEM, TEM)、X光繞射分析儀及超導量子干涉儀可以得知奈米殼核膠囊為一具有超順磁性的中空球體,且粒徑分布範圍在150到250奈米間,可被磁場吸引並穩定分布於水相中。而細胞毒殺實驗結果顯示,修飾PEG-PLGA後的奈米殼核膠囊有較佳的藥物釋放量及細胞毒殺特性,根據過去的文獻推測其原因為PEG及PLGA高分子都具有較佳的生物相容性,且親水端的PEG分子可引導藥物載體較易經由受體媒介式胞吞作用(receptor-mediated endocytosis)進入癌細胞中。而鍵結形成PEG-PLGA後,親水端的PEG可以延長藥物載體在細胞及生物體內的循環,親油端的PLGA則可以穩定載體的殼核結構使之不易在循環過程中降解,增加了藥物載體在體內循環的時間,進而累積較多的磁性奈米殼核膠囊至腫瘤位置。論文第二部分為加強奈米殼核膠囊的標靶功能,將Beta-cyclodextrin (CD)經由化學修飾上具細胞表面蛋白CD44標靶特性的玻尿酸(Hyaruic acid,HA),並包覆油相紫杉醇於Beta-cyclodextrin中,使之形成水相且有標靶功能的藥物分子(HA-CD-PTX)。最後將改質完成的藥物同樣以乳化方式形成PVA/PEG-PLGA的奈米殼核膠囊,進行藥物釋放及標靶功能的測試,並檢測其物理性質與改質前無差異。表面改質根據文獻採化學合成及官能基置換的方法,分別將前驅物Beta-cyclodextrin接上硫醇基形成CD-SH、玻尿酸接上戊酸形成HA-pen,再經由反應後即可完成鍵結,在核磁共振儀及XPS電子能譜儀分析後可以推斷鍵結成功,且具有細胞毒殺效果。動物實驗方面則可以有效經由高週波磁場生熱及藥物標靶釋放後,抑制裸鼠多型性膠質母細胞瘤RG2的生長。
本論文開發出以奈米氧化鐵及PVA、PEG-PLGA高分子為基質的奈米殼核膠囊,可同時包覆水相及油相的抗癌藥物,外加磁場導引至腫瘤位置並以EPR效應經腫瘤細胞的微血管累積至細胞表面,藉由磁場生熱及胞吞作用而降解,可使水相及油相藥物依序釋放。水相藥物釋放後可經標靶作用深入腫瘤細胞,同時磁場生熱溫度達攝氏43度以上,可經由物理作用有效毒殺癌細胞、抑制腫瘤生長,達到化療與熱療的效果。
Nowadays effective anticancer drug delivery therapy can be reached by designing a targeting strategy with high stability during long circulation in the body and efficiently uptake by the target tumor cancer cells then degraded and decomposed easily in the cell to ensure the release of anticancer drug. This study reports a nanocapsule which is a nanoscale drug carrier formed by SPION (Superparamagnetic Iron Oxide Nanoparticles), PVA (Polyvinyl alcohol) and PEG-PLGA (Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide)), loaded with two phases of the antitumor drug PTX (Paclitaxel) which is wrapped with and without CD (beta-cyclodextrin) to change between water and oil phase.
The special characteristic of SPION provides the drug delivery carrier well targeting and thermal function to accumulate specifically in tumor cell site and kill tumor cells by heating up to 43oC with applied magnet filed. PVA and PEG-PLGA help the drug carrier form a stable hollow sphere shape, which is capable of carrying both oil phase (SPION and PTX) and water phase (SPION and PTX in CD) in a mono device with multiple functions and fit the size (150-250nm) to aggregate the drug carrier in tumor site via EPR effect. The combination of water-soluble CD and paclitaxel confers higher stability in the circulation system, which efficiently delivers paclitaxel into the targeted tumor cells and release paclitaxel within the cell by degradation. In further part, the water phase drug (PTX in CD) is loaded with HA (hyaluronic acid), a CD44 targeting function ligand, which drives the drug to the surface of tumor cell and induce the endocytosis to enter the cell.
This nanoscale drug carrier delivery system exhibits significant antitumor activity in cancer cell lines of Hela (human epithelial cervix adenocarcinoma), MCF-7 (human epithelial breast adenocarcinoma), MCF-7/ADR (human epithelial breast adenocarcinoma with multidrug resistance) and RG2 (rat glioblastoma); as well as having good repression in tumor growth of the BALB/c female nude mice model with RG2 tumor. This strategy established in this study provides knowledge for the stable development of advanced anticancer drug delivery for chemotherapy and hyperthermia.
致謝 i
摘要 ii
Abstract iv
Table of Contents vi
List of Figures viii
List of Tables xii
List of Schemes xiii
Abbreviations xiv
Chapter 1 Introduction 1
Chapter 2 Literature Review and Theory 4
2.1 Nowadays Tactic of Drug Delivery Materials 4
2.1.1 Introduction of Stimuli Responsive Drug Delivery Systems 5
2.1.2 Polymer Application in Stimuli Responsive Drug Delivery Systems 7
2.2 PEG and PLGA Application for Polymeric Nanoparticle 9
2.3 Anticancer Drug – Paclitaxel 10
2.4 Motivation 10
Chapter 3 Experimental Procedures 12
3.1 Materials and Reagent 12
3.2 Apparatus 14
3.3 Synthesis of Superparamagnetic Iron Oxide Nanoparticles 16
3.4 Synthesis of PVA based Nanocapsule 17
3.4.1 Synthesis of PVA Nanocapsule by single emulsion 17
3.4.2 Drug loading of PVA Nanocapsule by double emulsion 17
3.5 Synthesis of PEG-PLGA based Nanocapsule by Copolymer Modification 18
3.5.1 Synthesis of PEG-PLGA Nanocapsule by single emulsion 18
3.5.2 Drug loading of PEG-PLGA Nanocapsule by double emulsion 19
3.6 Characterizations 20
3.7 Magnetic Thermal Heating Effect of Nanocapsules 21
3.8 Drug Loading Efficiency and Encapsulation Efficiency 21
3.9 Drug Release 22
3.10 In Vitro Experiment 22
3.10.1 Cell Culture 22
3.10.2 Cellular Uptake 23
3.10.3 Cell Compatibility and Cytotoxicity 24
3.10.4 Flow Cytometry 25
3.11 In vivo Experiment 25
Chapter 4 Results and Discussion 27
4.1 Characterizations of Superparamagnetic Iron Oxide Nanoparticles 27
4.2 Characterizations of PVA based Nanocapsules 31
4.3 Characterizations of PEG-PLGA Based Nanocapsules 34
4.4 Comparison of PVA and PEG-PLGA Based Nanocapsules 38
4.5 Thermal Studies of Selected PVA and PEG-PLGA Based Nanocapsules 42
4.6 Drug Release 44
4.7 In Vitro Experiment 46
4.7.1 Thermal Properties 46
4.7.2 Cellular Uptake Efficiency 47
4.7.3 Flow Cytometry 49
4.7.4 Cell compatibility and Cytotoxicity 51
4.8 In Vivo Experiment 52
Chapter 5 Targeting Ligand Modification 58
5.1 Synthesis process of HA-CD-PTX 58
5.2 Characterization of Nanocapsule with HA-CD-PTX 60
5.3 Characterization of HA-CD-PTX 61
5.4 Cell Cytotoxicity of Nanocapsule with HA-CD-PTX 65
5.5 In Vivo Study of Nanocapsule with HA-CD-PTX 67
Chapter 6 Conclusions 70
Chapter 7 Future Expectation 72
References 73
1. Dennis J. Slamon, M.D., Ph.D., Brian Leyland-Jones, M.D., Steven Shak, M.D., Hank Fuchs, M.D., Virginia Paton, Pharm.D., Alex Bajamonde, Ph.D., Thomas Fleming, Ph.D., Wolfgang Eiermann, M.D., Janet Wolter, M.D., Mark Pegram, M.D., Jose Baselga, M.D., and Larry Norton, M.D. N Engl J Med 2001; 344:783-792.

2. Yasuhiro Matsumura, and Hiroshi Maeda. Cancer Res December 1986; 46:6387.

3. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). The Lancet 2005; 365(9472):1687-1717.

4. Joan H. Schiller, M.D., David Harrington, Ph.D., Chandra P. Belani, M.D., Corey Langer, M.D., Alan Sandler, M.D., James Krook, M.D., Junming Zhu, Ph.D., and David H. Johnson, M.D. for the Eastern Cooperative Oncology Group. N Engl J Med 2002; 346:92-98.

5. Bertrand Coiffier, M.D., Eric Lepage, M.D., Ph.D., Josette Brière, M.D., Raoul Herbrecht, M.D., Hervé Tilly, M.D., Reda Bouabdallah, M.D., Pierre Morel, M.D., Eric Van Den Neste, M.D., Gilles Salles, M.D., Ph.D., Philippe Gaulard, M.D., Felix Reyes, M.D., Pierre Lederlin, Pierre Lederlin, Ph.D., and Christian Gisselbrecht, M.D. N Engl J Med 2002; 346:235-242.

6. Laurie Gaspar, M.D., Charles Scott, M.S., Marvin Rotman, M.D., Sucha Asbell, M.D., Theodore Phillips, M.D., Todd Wasserman, M.D., W.Gillies McKenna, M.D., Ph.D., Roger Byhardt, M.D. International Journal of Radiation Oncology*Biology*Physics 1997; 37(4):745–751.

7. Anthony V. D'Amico, MD, PhD; Richard Whittington, MD; S. Bruce Malkowicz, MD; Delray Schultz, PhD; Kenneth Blank, MD; Gregory A. Broderick, MD; John E. Tomaszewski, MD; Andrew A. Renshaw, MD; Irving Kaplan, MD; Clair J. Beard, MD; Alan Wein, MD. JAMA. 1998; 280(11):969-974.

8. Jonathan C.W. Edwards, M.D., Leszek Szczepański, M.D., Ph.D., Jacek Szechiński, M.D., Ph.D., Anna Filipowicz-Sosnowska, M.D., Ph.D., Paul Emery, M.D., David R. Close, Ph.D., Randall M. Stevens, M.D., and Tim Shaw, B.Sc. N Engl J Med 2004; 350:2572-2581.

9. Lee M. Ellis1 & Daniel J. Hicklin1. Nature Reviews Cancer 2008; 8:579-591.

10. Charles Sawyers. Nature 2004; 432:294-297.

11. Steven A Rosenberg, James C Yang & Nicholas P Restifo. Nature Medicine 2004; 10:909-915.

12. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA. N Engl J Med 1988; 319(25):1676-1680.

13. G. Mathé, J.L. Amiel, L. Schwarzenberg, M. Schneider, A. Cattan, J.R. Schlumberger, M. Hayat, F. De Vassal. The Lancet 1969; 293(7597):697-699.

14. D. Neofytos, D. Horn, E. Anaissie, W. Steinbach, A. Olyaei, J. Fishman, M. Pfaller, C. Chang, K. Webster, and K. Marr1. Clin Infect Dis. 20009; 48(3):265-273.

15. Mark Cobbold, Naeem Khan, Batoul Pourgheysari, Sudhir Tauro, Dorothy McDonald, Husam Osman, Mario Assenmacher, Lucinda Billingham, Colin Steward, Charles Crawley, Eduardo Olavarria, John Goldman, Ronjon Chakraverty, Premini Mahendra, Charles Craddock, and Paul A.H. Moss. EM 2008; 202(3):379-386.

16. J Maertens, O Marchetti, R Herbrecht, O A Cornely, U Flückiger, P Frêre, B Gachot, W J Heinz, C Lass-Flörl, P Ribaud, A Thiebaut and C Cordonnier. Bone Marrow Transplantation (2011) 46, 709–718.

17. Ana P. Castano, Pawel Mroz & Michael R. Hamblin. Nature Reviews Cancer 6, 535-545 (July 2006).

18. David M. Brown, MD, Mark Michels, MD, Peter K. Kaiser, MD, Jeffrey S. Heier, MD, Judy P. Sy, PhD, Tsontcho Ianchulev, MD, MPH. Ophthalmology 2009; 116(1):57–65.

19. Bergein F. Overholt, MD, Charles J. Lightdale, MD, Kenneth K. Wang, MD, Marcia I. Canto, MD, Steven Burdick, MD, Roger C. Haggitt, MD, Mary P. Bronner, MD, Shari L. Taylor, MD, Michael G.A. Grace, PhD, Michelle Depot, PhD. Gastrointestinal Endoscopy Volume 62, Issue 4, October 2005, Pages 488–498.

20. Giulio Jori PhD, Clara Fabris PhD, Marina Soncin PhD, Stefania Ferro MSc, Olimpia Coppellotti PhD, Donata Dei PhD, Lia Fantetti PhD, Giacomo Chiti PhD and Gabrio Roncucci PhD. Lasers in Surgery and Medicine Special Issue: Photodynamic Therapy Volume 38, Issue 5, pages 468–481, June 2006.

21. Lasse R. Braathen, MD, PhD, MHAa, Rolf-Markus Szeimies, MD, PhDb, Nicole Basset-Seguin, MD, PhDc, Robert Bissonnette, MDd, Peter Foley, MBBS, BMedSc, MDe, David Pariser, MDf, Rik Roelandts, MD, PhDg, Ann-Marie Wennberg, MD, PhDh, Colin A. Morton, MBChB, MD, FRCPi. Journal of the American Academy of Dermatology Volume 56, Issue 1, January 2007, Pages 125–143.

22. Yusheng Feng, David Fuentes, Andrea Hawkins, Jon Bass, Marissa Nichole Rylander, Andrew Elliott, Anil Shetty, R. Jason Stafford, J. Tinsley Oden Engineering with Computers January 2009, Volume 25, Issue 1, pp 3-13.

23. Zhuang Liu, Kai Chen, Corrine Davis, Sarah Sherlock, Qizhen Cao, Xiaoyuan Chen, and Hongjie Dai. Cancer Res August 15, 2008 68; 6652.

24. Cotton, Bryan A. MD; Gunter, Oliver L. MD; Isbell, James MD; Au, Brigham K. BS; Robertson, Amy M. MD; Morris, John A. Jr MD; St. Jacques, Paul MD; Young, Pampee P. MD, PhD Journal of Trauma-Injury Infection & Critical Care: May 2008 - Volume 64 - Issue 5 - pp 1177-1183.

25. Cancer Registry Annual Report 2012, Taiwan Health Promotion Administration
Ministry Of Health and Welfare Taiwan February 2015.

26. Rahul P. Bagwe, Lisa R. Hilliard, and Weihong Tan. Langmuir, 2006, 22 (9), pp 4357–4362.

27. R. A. Sperling, W. J. Parak Philosophical Transactions of the Royal Society A: 2010-02-15.

28. Hongwei Gu, Zhimou Yang, Jinhao Gao, C. K. Chang, and Bing Xu. J. Am. Chem. Soc., 2005, 127 (1), pp 34–35.

29. Morteza Mahmoudia, Shilpa Sant, Ben Wangc, Sophie Laurente, Tapas Senf. Advanced Drug Delivery Reviews Volume 63, Issues 1–2, January–February 2011, Pages 24–46.

30. Ian J. Bruce and Tapas Sen Langmuir, 2005, 21 (15), pp 7029–7035.

31. Gil Goncalves, Paula A. A. P. Marques, Carlos M. Granadeiro, Helena I. S. Nogueira, M. K. Singh and J. Grácio Chem. Mater., 2009, 21 (20), pp 4796–4802.

32. Fabienne Danhiera, Olivier Feronb, Véronique Préata,Journal of Controlled Release
Volume 148, Issue 2, 1 December 2010, Pages 135–146.

33. Hala Gali-Muhtasiba, Albert Roessnerb, Regine Schneider-Stockb. The International Journal of Biochemistry & Cell Biology Volume 38, Issue 8, 2006, Pages 1249–1253.

34. Ingo Ott and Ronald Gust Arch. Pharm. Chem. Life Sci. 2007, 340, 117 – 126.

35. David Ho. NEJM, 333: 450-1 (1995).

36. Simona Mura, Julien Nicolas & Patrick Couvreur Nature Materials 12, 991–1003 (2013).

37. C. Pregoa, D. Torresa, E. Fernandez-Megiab, R. Novoa-Carballalb, E. Quiñoáb, M.J. Alonsoa, Journal of Controlled Release Volume 111, Issue 3, 10 April 2006, Pages 299–308.

38. Kevin Letchford, Helen Burt European Journal of Pharmaceutics and Biopharmaceutics
Volume 65, Issue 3, March 2007, Pages 259–269.

39. E Marangoni1, N Lecomte, L Durand1, G de Pinieux, D Decaudin1, C Chomienne, F Smadja-Joffe and M-F Poupon. British Journal of Cancer (2009) 100, 918–922.

40. Serafino, A.; Zonfrillo, M.; Andreola, F.; Psaila, R.; Mercuri, L.; Moroni, N.; Renier, D.; Campisi, M.; Secchieri, C.; Pierimarchi, P. Current Cancer Drug Targets, Volume 11, Number 5, June 2011, pp. 572-585(14).

41. Rudolf Hergt, Silvio Dutz, Robert Müller and Matthias Zeisberger Published 8 September 2006. Journal of Physics: Condensed Matter, Volume 18, Number 38.

42. M. Johannsena, U. Gneveckowbc, L. Eckeltb, A. Feussnerb, N. WaldÖFnerc, R. Scholzc, S. Degera, P. Wustb, S. A. Loeninga & A. Jordanbc. International Journal of Hyperthermia Volume 21, Issue 7, 2005.

43. Ellen L. Jones, James R. Oleson, Leonard R. Prosnitz, Thaddeus V. Samulski, Zeljko Vujaskovic, Daohai Yu, Linda L. Sanders and Mark W. Dewhirst. JCO May 1, 2005 vol. 23 no. 13 3079-3085.

44. Samir Mitragotri,Paul A. Burke & Robert Langer Nature Reviews Drug Discovery 13, 655–672 (2014).

45. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

46. Kim, H. K. & Park, T. G. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation stability and incomplete release mechanism. Biotechnol. Bioeng. 65, 659–667 (1999).

47. Putney, S. D. & Burke, P. A. Improving protein therapeutics with sustained-release formulations. Nature Biotech. 16, 153–157 (1998).

48. Radomsky, M. L., Whaley, K. J., Cone, R. A. & Saltzman, W. M. Macromolecules released from polymers: diffusion into unstirred fluids. Biomaterials 11, 619–624 (1990).

49. Bock, N., Dargaville, T. R. & Woodruff, M. A. Controlling microencapsulation and release of micronized proteins using poly(ethylene glycol) and electrospraying. Eur. J. Pharm. Biopharm. 87, 366–377 (2014).

50. Ding, A. G., Shenderova, A. & Schwendeman, S. P. Prediction of microclimate pH in poly(lactic-co-glycolic acid) films. J. Am. Chem. Soc. 128, 5384–5390 (2006).

51. Miele, E., Spinelli, G. P., Miele, E., Tomao, F. & Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int. J. Nanomed. 4, 99–105 (2009).

52. Zhu, G., Mallery, S. R. & Schwendeman, S. P. Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nature Biotech. 18, 52–57 (2000).

53. Simpkins, F. et al. Chemoimmunotherapy using pegylated liposomal doxorubicin and interleukin-18 in recurrent ovarian cancer: a phase I dose-escalation study. Cancer Immunol. Res. 1, 168–178 (2013).

54. Von Hoff, D. D. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691–1703 (2013).

55. Rahman, M. A. et al. Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth. J. Control Release 159, 384–392 (2012).

56. Barenholz, Y. Doxil — the first FDA-approved nano-drug: lessons learned. J. Control Release 160, 117–134 (2012).

57. Parrott, M. C. et al. Incorporation and controlled release of silyl ether prodrugs from PRINT nanoparticles. J. Am. Chem. Soc. 134, 7978–7982 (2012).

58. Deng, Z. et al. Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 32, 4976–4986 (2011).

59. Kim, D., Lee, E. S., Oh, K. T., Gao, Z. G. & Bae, Y. H. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 4, 2043–2050 (2008).

60. Gao, G. H. et al. The use of pH-sensitive positively charged polymeric micelles for protein delivery. Biomaterials 33, 9157–9164 (2012).

61. Fan, J., Zeng, F., Wu, S. & Wang, X. Polymer micelle with pH-triggered hydrophobic-hydrophilic transition and de-cross-linking process in the core and its application for targeted anticancer drug delivery. Biomacromolecules 13, 4126–4137 (2012).

62. Qu, W. et al. A silica-based pH-sensitive nanomatrix system improves the oral absorption and efficacy of incretin hormone glucagon-like peptide-1. Int. J. Nanomed. 7, 4983–4994 (2012).

63. Min, K. H. et al. Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J. Control. Release 144, 259–266 (2010).

64. Sémiramoth, N. et al. Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano 6, 3820–3831 (2012).

65. Yang, Y. Q., Zheng, L. S., Guo, X. D., Qian, Y. & Zhang, L. J. pH-sensitive micelles self-assembled from amphiphilic copolymer brush for delivery of poorly water-soluble drugs. Biomacromolecules 12, 116–122 (2010).

66. Du, J-Z., Du, X-J., Mao, C-Q. & Wang, J. Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 133, 17560–17563 (2011).

67. Auguste, D. T. et al. Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependent liposomes. J. Control. Release 130, 266–274 (2008).

68. Lee, E. S. et al. Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. J. Control. Release 129, 228–236 (2008).

69. Harris, T. J. et al. Protease-triggered unveiling of bioactive nanoparticles. Small 4, 1307–1312 (2008).

70. Zhu, L., Kate, P. & Torchilin, V. P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6, 3491–3498 (2012).

71. Banerjee, J. et al. Release of liposomal contents by cell-secreted matrix metalloproteinase-9. Bioconjugate Chem. 20, 1332–1339 (2009).

72. Hatakeyama, H. et al. Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials 32, 4306–4316 (2011).

73. Zhang, L. et al. General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Chem. Eur. J. 18, 12512–12521 (2012).

74. Hu, S-H., Chen, S-Y., Liu, D-M. & Hsiao, C-S. Core/single-crystal-shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism. Adv. Mater. 20, 2690–2695 (2008).

75. Hu, S-H., Liu, D-M., Tung, W-L., Liao, C-F. & Chen, S-Y. Surfactant-free, self-assembled PVA-iron oxide/silica core–shell nanocarriers for highly sensitive, magnetically controlled drug release and ultrahigh cancer cell uptake efficiency. Adv. Funct. Mater. 18, 2946–2955 (2008).

76. Hu, S-H., Chen, S-Y. & Gao, X. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano 6, 2558–2565 (2012).

77. Katagiri, K. et al. Magnetoresponsive on-demand release of hybrid liposomes formed from Fe3O4 nanoparticles and thermosensitive block copolymers. Small 7, 1683–1689 (2011).

78. Qin, J. et al. Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv. Mater. 21, 1354–1357 (2009).

79. Park, J. W., Bae, K. H., Kim, C. & Park, T. G. Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery. Biomacromolecules 12, 457–465 (2010).

80. Satarkar, N. S. & Zach Hilt, J. Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater. 4, 11–16 (2008).

81. Muthana, M. et al. A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Ther. 15, 902–910 (2008).

82. Huang, H. Y. et al. Self-assembling PVA-F127 thermosensitive nanocarriers with highly sensitive magnetically-triggered drug release for epilepsy therapy in vivo. J. Mater. Chem. 22, 8566–8573 (2012).

83. Bringas, E. et al. Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chem. Commun. 48, 5647–5649 (2012)

84. Sapet, C., Pellegrino, C., Laurent, N., Sicard, F. & Zelphati, O. Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo. Pharm. Res. 29, 1203–1218 (2012).

85. Nahire, R. et al. Ultrasound enhanced matrix metalloproteinase-9 triggered release of contents from echogenic liposomes. Mol. Pharm. 9, 2554–2564 (2012).

86. Baeza, A., Guisasola, E., Ruiz-Hernández, E. & Vallet-Regí, M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 24, 517–524 (2012).

87. Fang, W., Yang, J., Gong, J. & Zheng, N. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater. 22, 842–848 (2012).

88. Dai, J., Lin, S., Cheng, D., Zou, S. & Shuai, X. Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew. Chem. Int. Ed. 50, 9404–9408 (2011).

89. Han, D., Tong, X. & Zhao, Y. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 28, 2327–2331 (2012).

90. Ta, T., Convertine, A. J., Reyes, C. R., Stayton, P. S. & Porter, T. M. Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin. Biomacromolecules 11, 1915–1920 (2010)

91. Ruth Duncan. Nature Reviews, Drug Discovery Volume 2, May 2003; 347-360.

92. Duncan R. et al. Polymer–drug conjugates, PDEPT and PELT: Basic principles for design and transfer from the laboratory to the clinic. J. Control Release 74, 135–146 (2001).

93. Satchi-Fainaro, R. et al. PDEPT: Polymer directed enzyme prodrug therapy. II. HPMA copolymer-β-lactamase and HPMA-C-Dox as a model combination. Bioconj. Chem. 2003; 14(4):797-804.

94. Kerbel, R. & Folkman, J. Clinical translation of angiogenic inhibitors. Nature Rev. Cancer 2, 727–739 (2002).

95. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

96. Gaur, S. et al. Preclinical study of the cyclodextrin-polymer conjugate of camptothecin CRLX101 for the treatment of gastric cancer. Nanomedicine 8, 721–730 (2012).

97. Ron, E. et al. Controlled release of polypeptides from polyanhydrides. Proc. Natl Acad. Sci. USA 90, 4176–4180 (1993).

98. Cohen, S., Yoshioka, T., Lucarelli, M., Hwang, L. H. & Langer, R. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm. Res. 8, 713–720 (1991).

99. Dunbar, J. L. et al. Single- and multiple-dose pharmacokinetics of long-acting injectable naltrexone. Alcohol Clin. Exp. Res. 30, 480–490 (2006).

100. Sat, Y. N. et al. Comparison of vascular permeability and enzymatic activation of the polymeric prodrug HPMA copolymer–doxorubicin (PK1) in human tumour xenografts. Proc. Am. Assoc. Cancer Res. 90, 41 (1999).

101. Wu, J., Akaike, T. & Maeda, H. Modulation of enhanced vascular permeability in tumours by a bradykinin antagonist, a cyclooxygenase inhibitor. Cancer Res. 58, 159–165 (1998).

102. Jain, R. K. Delivery of molecular and cellular medicine to solid tumours. Adv. Drug Deliv. Rev. 46, 149–168 (2001).

103. Rui Yanga, Won-Sik Shima, Fu-De Cuic, Gang Chengc, Xu Hanc, Qing-Ri Jina, Dae-Duk Kima, Suk-Jae Chunga, Chang-Koo Shima, International Journal of Pharmaceutics Volume 371, Issues 1–2, 17 April 2009, Pages 142–147

104. Na Zhang, Chuda Chittasupho, Chadarat Duangrat, Teruna J. Siahaan and Cory Berkland. Bioconjugate Chem., 2008, 19 (1), pp 145–152

105. Carrie S.W. Chonga, Min Caoa, Winnie W. Wongb, Karl P. Fischerb, William R. Addisonb, Glen S. Kwona, c, D. Lorne Tyrrellb, John Samuela, , Journal of Controlled Release Volume 102, Issue 1, 20 January 2005, Pages 85–99.

106. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapies in cancer chemotherapy: mechanism of tumouritropic accumulation of proteins and the antitumour agent SMANCS. Cancer Res. 6, 6387–6392 (1986).

107.Bailon, P. & Berthold, W. Polyethylene glycol-conjugated pharmaceutical proteins. Pharm. Sci. Technol. Today 1, 352–356 (1998).

108. De Duve, C. et al. Lysosomotropic agents. Biochem. Pharmacol. 23, 2495–2531 (1974).

109. Lee, S et al. Drug delivery systems employing 1,6-elimination: Releasable poly(ethylene glycol) conjugates of proteins. Bioconj. Chem. 12, 163–169 (2001).

110. Nucci, M. L., Shorr, D. & Abuchowski, A. The therapeutic values of poly(ethylene glycol)-modified proteins. Adv. Drug Deliv. Rev. 6, 133–151 (1991).

111. Francis, G. et al. Polyethylene glycol modification: Relevance to improved methodology to tumour targeting. J. Drug Target. 3, 321–340 (1996).

112. Mingyu Guo, Ming Jiang, Stergios Pispas, Wei Yu and Chixing Zhou Macromolecules, 2008, 41 (24), pp 9744–9749.

113. By Frank van de Manakker, Kevin Braeckmans, Najim el Morabit, Stefaan C. De Smedt, Cornelus F. van Nostrum, and Wim E. Hennink. Adv. Funct. Mater. 2009, 19, 2992–3001.

114. Kwangjae Cho1, Xu Wang1, Shuming Nie2, Zhuo (Georgia) Chen1 and Dong M. Shin1 Clin Cancer Res March 1, 2008 14; 1310.

115. Yanglong Hou, Zhichuan Xu, and Shouheng Sun. Angew. Chem. Int. Ed. 2007, 46, 6329 –6332.

116. Shang-Hsiu Hu, Yu-Wei Chen, Wen-Ting Hung, I-Wei Chen, San-Yuan Chen, Adv. Mater., 2012 Volume 24, Issue 13 April 3, 2012.

117. Jianjun Chenga, Benjamin A. Teplya, Ines Sherifia, Josephine Sunga, Gaurav Luthera, Frank X. Gua, Etgar Levy-Nissenbauma, Aleksandar F. Radovic-Morenob, Robert Langera, Omid C. Farokhzadb Biomaterials. Volume 28, Issue 5, February 2007, Pages 869–876.

118. Francesco M. Veronese, Gianfranco Pasut Drug Discovery Today Volume 10, Issue 21, 1 November 2005, Pages 1451–1458.

119. Chun-Jiang Jia, Ling-Dong Sun Prof. Dr., Zheng-Guang Yan, Li-Ping You Prof., Feng Luo, Xiao-Dong Han Prof. Dr., Yu-Cheng Pang, Ze Zhang Prof. Dr. and Chun-Hua Yan Prof. Dr. Angewandte Chemie Volume 117, Issue 28, pages 4402–4407, July 11, 2005.

120. Jingwei Lia, Liang Fenga, Li Fana, Yuan Zhaa, Liangran Guoa, Qizhi Zhanga, Jun Chena, Zhiqing Panga, Yuchen Wanga, Xinguo Jianga, Victor C. Yangc, Longping Wend, Biomaterials Volume 32, Issue 21, July 2011, Pages 4943–4950.

121. Stanley Moffatt, Richard J. Cristiano International Journal of Pharmaceutics Volume 321, Issues 1–2, 14 September 2006, Pages 143–154.

122. Kaili Hua, Yanbin Shic, Wenming Jiangd, Jiaying Hana, Shixian Huanga, Xinguo Jianga, International Journal of Pharmaceutics Volume 415, Issues 1–2, 30 August 2011, Pages 273–283.

123. Anshu Yanga, Lin Yangc, Wei Liua, Zhuoya Lic, Huibi Xua, Xiangliang Yanga. International Journal of Pharmaceutics Volume 331, Issue 1, 22 February 2007, Pages 123–132.

124. Brijeshkumar Patel, Vivek Gupta1, Fakhrul Ahsan. Journal of Controlled Release Volume 162, Issue 2, 10 September 2012, Pages 310–320.

125. Jianwei Guo, Xiaoling Gao, Lina Su, Huimin Xia, Guangzhi Gu, Zhiqing Pang, Xinguo Jiang, Lei Yao, Jun Chen, Hongzhuan Chen. Biomaterials Volume 32, Issue 31, November 2011, Pages 8010–8020.

126. Hai Wang, Ying Zhao, Yan Wu, Yu-lin Hu, Kaihui Nan, Guangjun Nie, Hao Chen. Biomaterials Volume 32, Issue 32, November 2011, Pages 8281–8290 Pages 1748–1754.

127. Jing Jing, Anna Szarpak-Jankowska, Raphael Guillot, Isabelle Pignot-Paintrand, Catherine Picart, and Rachel Auzely-Velty. Chem. Mater. 2013, 25, 3867−3873.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
2. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
3. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
4. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
5. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
6. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
7. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
8. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
9. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
10. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
11. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
12. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
13. 外泌體修飾磁性奈米粒子透過對流增強遞送系統應用於腦瘤治療
14. 具光熱免疫療法之巨噬細胞外泌體裝飾金/銀殼核三角奈米板結合檢查點阻斷劑應用於抑制轉移性腫瘤
15. 石墨烯奈米複合材料之穿透藥物傳遞應用於深度腦部腫瘤治療
 
* *