帳號:guest(13.58.116.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐子祐
作者(外文):Hsu, Tzu Yu
論文名稱(中文):發光二極體模組中銀鈀合金打線在電遷移實驗下的微結構及形貌之研究
論文名稱(外文):Microstructure evolution of Ag-4Pd alloy wire bonded on Al-Si metallization under Electromigration test in light-emitting diode (LED) modules
指導教授(中文):歐陽汎怡
指導教授(外文):Ouyang, Fan Yi
口試委員(中文):顏怡文
廖建能
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011704
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:110
中文關鍵詞:銀合金打線電遷移
外文關鍵詞:Ag-alloyed wire bondelectromigration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:419
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
半導在體封裝技術中,打線技術是最為成熟且廣泛運用於各項電子產品。隨著電子產品的縮小或高效能需求,打線材料必須克服更多隨之而來的挑戰。然而,金價的提升以及銅線在製程及應用上問題,使得銀線與銀合金線逐漸成為新一代的打線材料以提供價格及應用上的優勢。但是在過去的文獻資料中,鮮少探討銀合金打線與鋁金屬薄膜在電流下之影響。本論文探討銀鈀合金線與鋁墊打線系統在不同打線參數下的拉力測試及通電測試,同時也研究電遷移實驗下打線系統的微結構及形貌之改變。實驗結果顯示,適當的超音波震盪及楔型接點位置可以有效提升打線系統的可靠度。另一方面,試片在電遷移的實驗中被施予8x104 A/cm2之電流密度在環境溫度150℃及175℃下。我們發現在電遷移實驗中存在兩種不同的電阻對時間的關係。我們認為孔洞的生成影響電阻變化呈凹向上的趨勢,快速的介金屬化合物生成主導電阻改變呈凹向下的趨勢。同時我們更進一步透過模擬來分析接點內部的電流密度分布情形,發現在球型接點的角落和楔型接合處有最大的電流密度,此發現和球型接點處的孔洞位置相同。在電遷移的實驗中也發現明顯的極化效應,當電子流方向從鋁流向銀時,可以發現接點上有大量的突起物。然而當接點中的電子流方向從銀流向鋁或是沒有施加電流時,接點外觀並無明顯變化。我們推測此極化效應的形成原因是因為接點的幾何效應伴隨著電遷移所造成的壓應力影響接點有顯著的形貌改變,而在電子流方向相反及未通電的接點則因並無接點幾何上的縮減而沒有產生形貌上的變化。同時,壓應力也使動態再結晶的現象顯著地發生在銀合金線靠近電子流方向從鋁流向銀的接點。在微結構中,我們觀察到電子流方向也會影響介金屬化合物的生成。在相同實驗條件下的試片中,當電子流方向與化學位能方向相同時,介金屬化合物的厚度較厚,反之則較薄。而未通電的打線系統則因為溫度較低,介金屬化合物的成長速度最慢。除此之外,研究結果指出銀鈀合金打線系統在環境溫度157.2℃下未通電之介面反應為擴散控制機制。
The light-emitting diode (LED) is regarded as one of the energy-efficient electronic devices to environment. At the same time, wire bonding technology is utilized in LED package assembly. Gold wire bonding has been widely utilized in semiconductor packaging industry for electrical connections. However, since the gold price is soaring in past ten years, the alternative materials, such as copper and silver, are the candidates to replace gold. The silver alloy wire has shown many advantages, including excellent electrical and thermal properties. Nevertheless, not many studies have reported electromigration (EM) induced failure of silver alloy wire. This study employed silver alloy wires with 25.4 μm diameter bonded on 4 μm thick aluminum metallization of die pads to investigate their interfacial reaction and failure mechanism under current stressing of 8 x 104 A/cm2 at ambient temperature of 150℃ and 175℃. The bond pull test (BPT) was conducted before the EM test to understand the impact of various wire bonding parameters on electrical and mechanical properties. In addition, the resistance evolution of sample during current stressing and the microstructure of joint interface between silver alloy wire and Al bond pad were examined. In EM tests, two different resistance versus time curves were found and were attributed to void formation and rapid IMCs growth, respectively. The results exhibited that the polarity effect of distinct surface morphology on ball bonds and the different thickness of intermetallic compounds (IMCs) existed at the interface between the silver alloy wire and Al metallization pad. We propose that abnormal protrusions formation was observed at bond joints with electron flow from Al to Ag in samples due to flux divergence caused by the change in volume of ball bond. However, the surface morphology of bond joints with electron flow from Ag to Al and at isothermal condition did not change dramatically. The phenomena of dynamic recrystallization inside the wire can also be observed after current stressing. Again, dynamic recrystallization was more severe inside the wire adjacent to ball bonds when current flowed from Al to Ag. Moreover, different thickness of IMCs were observed at ball bonds with two different direction of electron flow. Meanwhile, the results of ANSYS simulation verified the current crowding effect might happen at the juncture of the ball bond and the heel of wedge bond on bump. The samples annealed at various time periods without current stressing showed the interfacial reaction between silver alloy wire and Al metallization is diffusion-controlled.
Content
摘要 I
Abstract III
致謝 V
List of Figures IX
List of Tables XIII
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2-1 Bonding process 4
2-1-1 Thermosonic ball and wedge bonding 5
2-1-2 Bond Stitch on Ball (BSOB) 7
2-1-3 Bond Pull Test (BPT) 9
2-2 Material issues & Phase Evolution of IMCs 12
2-2-1 Wire bonding material 12
2-2-2 Silver and Silver alloy wire 13
2-2-3 Ag-Al system 15
2-3 Electromigration (EM) 19
2-3-1 Electromigration in silver 19
2-3-2 Electromigration in wire bond 22
2-3-3 Joule Heating 26
2-3-4 Polarity effect 27
2-4 Motivation 29
Chapter 3 Experimental Details 30
3-1 Specimen Preparation 30
3-2 Bond Pull Test (BPT) 33
3-3 Electromigration Test 34
3-4 Joule Heating Test 37
3-5 Simulation 38
Chapter 4 Results 40
4-1 Bond Pull Test (BPT) 40
4.2 As-bonded 44
4-3 Joule Heating Measurement 46
4-4 EM Test of Resistance versus Time (RVT) curves 48
4-5 Morphology and Microstructure for group Ⅰ (concave-up type) 52
4-5-1 Morphology of bond joints for group Ⅰ 52
4-5-2 Microstructure of ball bonds for group Ⅰ 56
4-6 Morphology and Microstructure for group Ⅱ (concave-down type) 60
4-6-1 Morphology of bond joints for group Ⅱ 60
4-6-2 Microstructure of ball bonds for group Ⅱ 64
4-7 Morphology and Microstructure for sample F 68
4-8 Comparison of sample B at 150℃ and sample F at 175℃ under EM test 71
4-8-1 Comparison of morphology of ball bonds of sample B and sample F 71
4-8-2 Comparison of microstructure of wires of sample B and sample F 73
4-9 The growth of IMCs 77
4-10 Simulation 80
Chapter 5 Discussion 83
5-1 Polarity effect 83
5-1-1 Formation of protrusions after current stressing 83
5-1-2 Dynamic recrystallization 87
5-1-3 IMCs formation 89
5-2 RVT curves for group Ⅰ(concave-up) and group Ⅱ (concave-down) 93
5-3 Kinetics of IMCs at isothermal condition 95
Chapter 6 Conclusions 100
Reference 102
Appendix A 109
Appendix B 110
Reference
1. Evans, D.L., High-luminance LEDs replace incandescent lamps in new applications, 1997. 3002: p. 142-153.
2. Peng, H.Y., Devarajan, M., Lee, T.T., and Lacey, D., Comparison of Radio Frequency and Microwave Plasma Treatments on LED Chip Bond Pad for Wire Bond Application, Components, Packaging and Manufacturing Technology, IEEE Transactions on, 2015. 5(4): p. 562-569.
3. Park, J., Cha, H.J., Kim, B.S., Jo, Y.B., Park, J.K., Kim, J.Y., Shin, S.C., Shin, M.Y., Ouh, K.I., and Jeon, H., Interfacial Degradation Mechanism of Au/Al and Alloy/Al Bonds Under High Temperature Storage Test: Contamination, Epoxy Molding Compound, Wire and Bonding Strength, Components and Packaging Technologies, IEEE Transactions on, 2007. 30(4): p. 731-744.
4. Xu, H., Liu, C., Silberschmidt, V.V., Pramana, S.S., White, T.J., Chen, Z., and Acoff, V.L., Intermetallic phase transformations in Au–Al wire bonds, Intermetallics, 2011. 19(12): p. 1808-1816.
5. Orchard, H.T. and Greer, A.L., Electromigration effects on intermetallic growth at wire-bond interfaces, Journal of Electronic Materials, 2006. 35(11): p. 1961-1968.
6. Zin, E., Michael, N., Kang, S.H., Oh, K.H., Chul, U., Cho, J.S., Moon, J.T., and Kim, C.U., Mechanism of electromigration in Au/Al wirebond and its effects, Electronic Components and Technology Conference, 2009. ECTC 2009. 59th, 2009: p. 943-947.
7. Kim, H.J., Lee, J.Y., Paik, K.W., Koh, K.W., Won, J., Choe, S., Lee, J., Moon, J.T., and Park, Y.J., Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability, Components and Packaging Technologies, IEEE Transactions on, 2003. 26(2): p. 367-374.
8. Yang, T.H., Lin, Y.M., and Ouyang, F.Y., Joule-Heating-Induced Damage in Cu-Al Wedge Bonds Under Current Stressing, Journal of Electronic Materials, 2014. 43(1): p. 270-276.
9. Liu, H., Chen, Q., Zhao, Z., Wang, Q., Zeng, J., Chae, J., and Lee, J., Reliability of Au-Ag alloy wire bonding, Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 2010: p. 234-239.
10. Chen, J.L. and Lin, Y.C., A new approach in free air ball formation process parameters analysis, Electronics Packaging Manufacturing, IEEE Transactions on, 2000. 23(2): p. 116-122.
11. Tsai, H.H., Chuang, T.H., Lee, J.D., Tsai, C.H., Wang, H.C., Lin, H.J., and Chang, C.C., High performance Ag-Pd alloy wires for high frequency IC packages, Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International, 2013: p. 162-165.
12. Chuang, T.H., Lin, H.J., Chuang, C.H., Shiue, Y.Y., Shieu, F.S., Huang, Y.L., Hsu, P.C., Lee, J.D., and Tsai, H.H., Thermal stability of grain structure and material properties in an annealing twinned Ag–4Pd alloy wire, Journal of Alloys and Compounds, 2014. 615(0): p. 891-898.
13. Chuang, T.H., Lin, H.J., Chuang, C.H., Tsai, C.H., Lee, J.D., and Tsai, H.H., Durability to Electromigration of an Annealing-Twinned Ag-4Pd Alloy Wire Under Current Stressing, Metallurgical and Materials Transactions A, 2014. 45(12): p. 5574-5583.
14. http://www.wirebonddemo.com/node/101.
15. Coucoulas, A., Hot Work Ultrasonic Bonding-A Method of Facilitating Metal Flow By Restoration Processes, 1kkk 20th Electronic Components Conference Proceedings, 1970: p. 539-556.
16. Harman, G.G., Wire bonding in microelectronics. 2010: McGraw-Hill.
17. Xu, H., Liu, C., Silberschmidt, V.V., Chen, Z., and Wei, J., The role of bonding duration in wire bond formation: a study of footprints of thermosonic gold wire on aluminium pad, Microelectronics International, 2010. 27(1): p. 11-16.
18. Kumar, B.S., Sivakumar, M., Wee, C.C., Li, M., Keng, Y., and Song, J., Cu Wire Bonding with Cu BSOB for SiP & Stacked Die Application, Electronics Packaging Technology Conference, 2009. EPTC '09. 11th, 2009: p. 16-20.
19. Palagud, J. and Wang, S.W., Palladium coated copper wire - Characteristics and wire behavior in BSOB process and it's reliability performance, Electronics Manufacturing Technology Conference (IEMT), 2014 IEEE 36th International, 2014: p. 1-8.
20. Chat, T.K. and Yoong, L.J., Bond stitch on ball for bare copper wire, Electronic Manufacturing Technology Symposium (IEMT), 2012 35th IEEE/CPMT International, 2012: p. 1-7.
21. Prasad, S.K., Advanced wirebond interconnection technology. 2004: Springer Science & Business Media.
22. Wang, C. and Sun, R., The quality test of wire bonding, Modern Applied Science, 2009. 3(12): p. p50.
23. Wang, M.C., Hsieh, Z.Y., Huang, K.S., Liu, C.H., and Lin, C.R., Analysis of promising copper wire bonding in assembly consideration, Microsystems, Packaging, Assembly and Circuits Technology Conference, 2009. IMPACT 2009. 4th International, 2009: p. 108-111.
24. Chauhan, P.S., Choubey, A., Zhong, Z., and Pecht, M.G., Copper wire bonding. 2014: Springer.
25. Dixit, V., Davis, H., and Clark, M., Wire Bonding Considerations: Design Tips for Performance and Reliability, ADVANCED PACKAGING, 2006. 15: p. 28-33.
26. https://ssd-rd.web.cern.ch/ssd-rd/bond/talks/2-04_Schneider-Ramelow.pdf.
27. Lu, C., Review on silver wire bonding, Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International, 2013: p. 226-229.
28. Liu, P., Tong, L., Wang, J., Shi, L., and Tang, H., Challenges and developments of copper wire bonding technology, Microelectronics Reliability, 2012. 52(6): p. 1092-1098.
29. Hu, G., Comparison of copper, silver and gold wire bonding on interconnect metallization, Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2012 13th International Conference on, 2012: p. 529-533.
30. Seng, Y.L., Characterization of Intermetallic Growth for Gold Bonding and Copper Bonding on Aluminum Metallization in Power Transistors, Electronics Packaging Technology Conference, 2007. EPTC 2007. 9th, 2007: p. 731-736.
31. Schmidt, R., König, C., and Prenosil, P., Novel wire bond material for advanced power module packages, Microelectronics Reliability, 2012. 52(9–10): p. 2283-2288.
32. Adams, D. and Alford, T.L., Encapsulated silver for integrated circuit metallization, Materials Science and Engineering: R: Reports, 2003. 40(6): p. 207-250.
33. Graedel, T.E., Corrosion mechanisms for silver exposed to the atmosphere, Journal of the Electrochemical Society, 1992. 139(7): p. 1963-1970.
34. Chuang, T.H., Lin, H.J., Wang, H.C., Chuang, C.H., and Tsai, C.H., Mechanism of Electromigration in Ag-Alloy Bonding Wires with Different Pd and Au Content, Journal of Electronic Materials, 2015. 44(2): p. 623-629.
35. Cho, J.S., Yoo, K.A., Hong, S.J., Moon, J.T., Lee, Y.J., W., H., Park, H., Ha, S.W., Son, S.B., Kang, S.H., and Oh, K.H., Pd effects on the reliability in the low cost Ag bonding wire, Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 2010: p. 1541-1546.
36. Adams, D., Alford, T.L., and Mayer, J.W., Silver Metallization: Stability and Reliability. 2007: Springer Science & Business Media.
37. Kai, L.J., Hung, L.Y., Wu, L.W., Chiang, M.Y., Jiang, D.S., Huang, C.M., and Wang, Y.P., Silver alloy wire bonding, Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, 2012: p. 1163-1168.
38. Smith, D.R. and Fickett, F.R., Low-temperature properties of silver, Journal Of Research-National Institute Of Standards And Technology, 1995. 100: p. 119-119.
39. Mcalister, A.J., The Ag−Al (Silver-Aluminum) system, Bulletin of Alloy Phase Diagrams, 1987. 8(6): p. 526-533.
40. Olia, H., Abbasi, M., and Razavi, S.H., Evaluation of diffusion and phase transformation at Ag/Al bimetal produced by cold roll welding, Transactions of Nonferrous Metals Society of China, 2012. 22(2): p. 312-317.
41. Liu, X., Liu, X., and Xie, J., Effects of annealing process on interface and mechanical properties of silver clad aluminum wires, Procedia Engineering, 2012. 27(0): p. 502-511.
42. Guo, R., Hang, T., Mao, D., Li, M., Qian, K., Lv, Z., and Chiu, H., Behavior of intermetallics formation and evolution in Ag–8Au–3Pd alloy wire bonds, Journal of Alloys and Compounds, 2014. 588(0): p. 622-627.
43. Kumar, S., Hoontae, K., Heo, Y.I.L., Kim, S.H., Hwang, J.S., and Moon, J.T., Thermosonic ball bonding behavior of Ag-Au-Pd alloy wire, Electronics Packaging Technology Conference (EPTC 2013), 2013 IEEE 15th, 2013: p. 15-20.
44. Suh, I.K., Ohta, H., and Waseda, Y., High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction, Journal of Materials Science, 1988. 23(2): p. 757-760.
45. Nagasawa, A. and Tatsumi, A., Phase Transformation in the Quenched Ag/Al Beta Phase Alloy, Transactions of the Japan Institute of Metals, 1988. 29(8): p. 625-633.
46. Neumann, J.P., Determination of the ordering in the intermetallic compound Ag2Al, Acta Metallurgica, 1966. 14(4): p. 505-511.
47. Blech, I.A., Electromigration in thin aluminum films on titanium nitride, Journal of Applied Physics, 1976. 47(4): p. 1203-1208.
48. Ho, P.S. and Kwok, T., Electromigration in metals, Reports on Progress in Physics, 1989. 52(3): p. 301.
49. Nowick, A.S., Diffusion in solids: recent developments. 2012: Elsevier.
50. Ouyang, F.Y., Tu, K.N., Kao, C.L., and Lai, Y.S., Effect of electromigration in the anodic Al interconnect on melting of flip chip solder joints, Applied Physics Letters, 2007. 90(21): p. 211914.
51. Chiu, S.H., Shao, T.L., Chen, C., Yao, D.J., and Hsu, C.Y., Infrared microscopy of hot spots induced by Joule heating in flip-chip SnAg solder joints under accelerated electromigration, Applied Physics Letters, 2006. 88(2): p. 022110.
52. Liang, S.W., Chang, Y.W., and Chen, C., Effect of Al-trace dimension on Joule heating and current crowding in flip-chip solder joints under accelerated electromigration, Applied Physics Letters, 2006. 88(17): p. 172108.
53. Ho, P.S. and Huntington, H.B., Electromigration and void observation in silver, Journal of Physics and Chemistry of Solids, 1966. 27(8): p. 1319-1329.
54. Alford, T.L., Misra, E., Bhagat, S.K., and Mayer, J.W., Influence of Joule heating during electromigration evaluation of silver lines, Thin Solid Films, 2009. 517(5): p. 1833-1836.
55. Wang, S., Gao, L., Li, M., Huang, D., Qian, K., and Chiu, H., Electro-migration of silver alloy wire with its application on bonding, Electronic Packaging Technology (ICEPT), 2013 14th International Conference on, 2013: p. 789-793.
56. Chuang, T.H., Wang, H.C., Chuang, C.H., Lin, H.J., Lee, J.D., and Tsai, H.H., Surface Reconstruction of an Annealing Twinned Ag-8Au-3Pd Alloy Wire Under Current Stressing, Metallurgical and Materials Transactions A, 2013. 44(11): p. 5106-5112.
57. Chuang, T.H., Wang, H.C., Chuang, C.H., Lee, J.D., and Tsai, H.H., Effect of Annealing Twins on Electromigration in Ag-8Au-3Pd Bonding Wires, Journal of Electronic Materials, 2013. 42(3): p. 545-551.
58. Chen, C., Tong, H.M., and Tu, K.N., Electromigration and thermomigration in Pb-free flip-chip solder joints, Annual Review of Materials Research, 2010. 40: p. 531-555.
59. Lu, M., Wright, S.L., Mcvicker, G., and Sri-Jayantha, S.M., Effect of Joule heating on electromigration reliability of Pb-free interconnect, Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, 2012: p. 590-596.
60. Blech, I.A. and Herring, C., Stress generation by electromigration, Applied Physics Letters, 1976. 29(3): p. 131-133.
61. Tu, K.N., Recent advances on electromigration in very-large-scale-integration of interconnects, Journal of Applied Physics, 2003. 94(9): p. 5451-5473.
62. Ouyang, F.Y., Hsu, H., Su, Y.P., and Chang, T.C., Electromigration induced failure on lead-free micro bumps in three-dimensional integrated circuits packaging, Journal of Applied Physics, 2012. 112(2): p. 023505.
63. Liu, Y., Allen, H., Luk, T., and Irving, S., Simulation and experimental analysis for a ball stitch on bump wire bonding process above a laminate substrate, Electronic Components and Technology Conference, 2006. Proceedings. 56th, 2006: p. 6 pp.
64. Tse, P.K. and Lach, T.M., Aluminum electromigration of 1-mil bond wire in octal inverter integrated circuits, Electronic Components and Technology Conference, 1995. Proceedings., 45th, 1995: p. 900-905.
65. Gaskell, D.R., Introduction to the Thermodynamics of Materials. 2008: CRC Press.
66. Xu, Q., Tang, G., and Jiang, Y., Thermal and electromigration effects of electropulsing on dynamic recrystallization in Mg–3Al–1Zn alloy, Materials Science and Engineering: A, 2011. 528(13): p. 4431-4436.
67. Krabbenborg, B., High current bond design rules based on bond pad degradation and fusing of the wire, Microelectronics Reliability, 1999. 39(1): p. 77-88.
68. Lin, C.K., Chang, Y.W., and Chen, C., Experimental and simulation analysis of concave-down resistance curve during electromigration in solder joints, Journal of Applied Physics, 2014. 115(8): p. 083707.
69. Lin, T.H., Wang, R.D., Chen, M.F., Chiu, C.C., Chen, S.Y., Yeh, T.C., Lin, L.C., Hou, S.Y., Lin, J.C., Chen, K.H., Jeng, S.P., and Yu, D.C.H., Electromigration study of micro bumps at Si/Si interface in 3DIC package for 28nm technology and beyond, Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, 2011: p. 346-350.
70. Baglin, J.E.E., D’heurle, F.M., and Hammer, W.N., The interaction process for Ag‐Al polycrystalline thin‐film couples, Journal of Applied Physics, 1979. 50(1): p. 266-275.
71. Gale, W.F. and Totemeier, T.C., Smithells metals reference book. 2003: Butterworth-Heinemann.
72. Shackelford, J.F. and Alexander, W., CRC materials science and engineering handbook. 2000: CRC press.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *