帳號:guest(18.191.130.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏鈺庭
作者(外文):Wei, Yu Ting
論文名稱(中文):矽/鍺通道與堆疊穿隧層應用於電荷陷阱式快閃記憶體元件之模擬研究
論文名稱(外文):Simulation Study of Si/Ge Channels and Stacked Tunneling Layer on Charge Trapping Flash Memory Devices
指導教授(中文):張廖貴術
指導教授(外文):Chang-Liao, Kuei-Shu
口試委員(中文):趙天生
謝嘉民
張廖貴術
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011564
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:109
中文關鍵詞:矽鍺通道電荷陷阱式快閃記憶體元件堆疊穿隧層TCAD模擬
外文關鍵詞:Si/Ge channelcharge-trapping type flash memorystacked tunnelingTCAD Simulaiton
相關次數:
  • 推薦推薦:0
  • 點閱點閱:46
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著近年來快閃式記憶體元件的日漸微縮,為了改善元件的操作特性及效能,許多方法被提出,如多晶矽與矽化鍺通道、無接面式通道、堆疊閘極介電層和奈米線結構等等。本論文利用Sentaurus TCAD (Technology Computer Aided Design)模擬軟體工具,模擬平面(二維)與三閘極(三維)的快閃式記憶體元件,探討並比較使用矽、鍺通道與堆疊二氧化鍺/氧化鋁、二氧化矽/氧化鋁、二氧化矽/二氧化鍺和二氧化鍺/氧化鋁/二氧化矽之穿隧層並應用於二維與三維結構的電荷陷阱式快閃記憶體特性。
第一部分為模擬平面多晶矽與矽化鍺通道元件的特性,並與實驗結果做比較。結果發現模擬結果趨勢與實驗不同,因此調整矽化鍺元件的穿隧層參數後再與多晶矽通道元件做比較。修正參數後,矽化鍺元件的寫入與抹除速度變得較快,也與實驗趨勢較符合,而電荷保持力特性的表現因為儲存層有較深的陷阱能階,因此多晶矽通道與矽化鍺通道元件的電荷保持力特性非常相近。
第二部分為了更接近實驗結構而採用三閘極結構快閃式記憶體元件,模擬比較多晶矽、矽化鍺與修正穿隧層參數矽化鍺通道的操作特性。修正穿隧層參數矽化鍺通道的寫入與抹除速度較快,但電荷保持力較多晶矽通道差。接著將三閘極結構模擬結果與平面結構結果做比較,發現三閘極結構有較高的注入效率因此有較快的寫入與抹除速度,並且穿隧層能障效應大過使用三閘極結構,因此適當的穿隧能障和三閘極結構能夠有效提升記憶體元件的操作表現。
第三部分為模擬堆疊穿隧層應用於無接面式矽與鍺通道快閃式記憶體的操作特性。由於較低的通道介面能障、較薄的穿隧層物理厚度以及使用較低介電係數材料的穿隧層堆疊結構,有較快的寫入及抹除速度,但物理厚度薄會有較差的抹除速度和電荷保持力特性。為了在操作特性並與電荷保持力取得平衡,因此使用三層堆疊結構與雙層堆疊結構做比較。三層堆疊結構因為有適當的物理厚度及堆疊組成,因此有較好的記憶體操作特性。
With the scale down of flash memory devices in recent years, several approaches such as poly-Si channel, SiGe channel, junctionless architecture, stacked gate dielectric and nanowire structure have been proposed to improve the device operation characteristics. In this thesis, Sentaurus TCAD (Technology Computer Aided Design) simulation tool is used to study planer (2D) and tri-gate (3D) flash memory devices. Effects of Si/Ge channels and stacked tunneling layers with GeO2/Al2O3, SiO2/Al2O3, GeO2/SiO2 and GeO2/Al2O3/SiO2 on 2D and 3D charge trapping flash memory devices are investigated and compared.
In the first part, simualted operation characteristics of planer poly-Si and SiGe channel charge-trapping flash memorys are compared to experimental ones. Results show that the trend of the simulation and experiment results are not consistent. Therefore, the physical parameters of tunneling layer of SiGe channel device are modified, and then the simulated results are compared with those of poly-Si channel device. Faster program/erase speeds are achieved by the modified parameters of tunneling layer of SiGe channel device, which shows the same trend as experiment results. The retention characteristics of poly-Si and SiGe devices are similar due to deeper energy level of traps in the trapping layer.
In the second part, tri-gate structures are employed in flash memory devices to simulate operation characteristics because they are exactly used in the experimental devices. Operation characteristics of devices with poly-Si channel and those with SiGe one and modified tunneling layer parameter (MPSiGe) are compared. MPSiGe devices show faster program and erase speeds but worse retention characteristics than poly-Si channel ones. Furthermore, it is found that program/erase speeds of devices with tri-gate structure are faster as compared to those with planer ones because of higher injection efficiency. The influence of tunneling barrier is larger than that of tri-gate structure. Therefore, operation performance of flash memory devices can be enhanced by appropriate tunneling barrier and tri-gate structure.
In the third part, stacked tunneling layer on operation characteristics of junctionless flash memory devices with Si/Ge channel are studied. The program/erase speeds of devices are faster because of lower channel barrier, thinner physical thickness of tunneling layer, and stacked tunneling layer with lower dielectric constant materials. Slow erase speed and poor retention characteristic of devices are due to thinner physical thickness. In order to obtain acceptable performance for all operation characteristics, device with three-layer stacked tunneling oxide is studied, and its results are compared with those of device with two-layer one. Device with three-layer stacked tunneling oxide shows better operation characteristics due to its appropriate physical thickness and stacked structures.
目錄
摘要 Ⅰ
Abstrate Ⅲ
致謝 Ⅴ
目錄 Ⅷ
圖目錄 XII
表目錄 XVI
第一章 序論 1
1.1 快閃記憶體元件 1
1.1.1浮動閘極式快閃記憶體元件 1
1.1.2電荷陷阱式快閃記憶體元件 2
1.2 多向式閘極結構與奈米線通道快閃式記憶體元件 4
1.2.1多向式閘極結構 4
1.2.2三維結構與奈米線通道 4
1.3 高介電係數材料與能帶工程之介紹 5
1.3.1高介電係數材料 5
1.3.2能帶工程 6
1.4 無接面快閃式記憶體元件介紹 7
1.5 多晶矽通道的應用 9
1.6 矽化鍺通道的應用 9
1.7 純鍺基板作為載子通道 10
第二章 電荷陷阱式快閃記憶體元件基本特性與模擬軟體介紹 19
2.1快閃式記憶體元件基本操作原理 19
2.2 載子穿隧機制 20
2.2.1 FN穿隧 (Fowler-Nordheim) 20
2.2.2直接穿隧 (Direct Tunneling , DT) 21
2.2.3修正FN穿隧(MFN) [36] 22
2.3 快閃記憶體元件元件可靠度特性 23
2.3.1電荷保持力 23
2.3.2耐久力 24
2.4 Sentaurus TCAD軟體介紹 25
2.4.1軟體基本介紹 25
2.4.2模擬之模型應用 26
第三章 模擬矽化鍺成長於多晶矽通道之電荷陷阱式快閃記憶體元件特性研究 36
3.1研究動機與背景 36
3.2矽化鍺成長於多晶矽通道快閃記憶體實驗結果 37
3.2.1實驗寫入及抹除特性 37
3.2.2實驗電荷保持力特性 38
3.3 模擬元件參數與模擬物理模型 39
3.3.1模擬快閃式記憶體元件參數設定 39
3.3.2模擬快閃式記憶體元件之物理模型 39
3.4 模擬結果與討論 40
3.4.1模擬多晶矽與矽化鍺通道元件寫入與抹除特性 40
3.4.2模擬修正穿隧層參數矽化鍺通道元件寫入與抹除特性 41
3.4.2電荷保持力特性 42
3.5 結論 43
第四章 模擬矽化鍺及多晶矽奈米線通道之三閘極快閃式記憶體元件特性研究 58
4.1 研究動機 59
4.2 模擬元件參數與物理模型 59
4.2.1模擬快閃式記憶體元件參數設定 59
4.2.2模擬快閃式記憶體元件之物理模型 60
4.3 模擬結果與討論 60
4.3.1寫入速度特性 60
4.3.2抹除速度特性 61
4.3.3電荷保持力特性 62
4.3.4二維元件與三維元件的寫入及抹除速度比較 62
4.4 結論 63
第五章 堆疊穿隧層應用於無接面電荷陷阱式快閃記憶體元件之模擬研究 73
5.1 研究動機與背景 74
5.2 模擬元件參數與物理模型 75
5.2.1模擬快閃式記憶體元件參數設定 75
5.2.2模擬快閃式記憶體元件之物理模型 75
5.3 模擬堆疊穿隧層結構結果與討論 76
5.3.1寫入速度特性 76
5.3.2抹除速度特性 77
5.3.3電荷保持力特性 78
5.3.4模擬雙層穿隧層結論 78
5.4 模擬三層穿隧層結果與討論 79
5.4.1寫入速度特性 79
5.4.2抹除速度特性 79
5.4.3電荷保持力特性 80
5.5 結論 80
第六章 結論 94
參考資料 96
[1] K. San, C. Kaya, and T. Ma, “Effects of Erase Source Bias on Flash EPROM Device Reliability,” in IEEE Electron Device Lett., vol. 42, no. 1, pp. 150-159, January 1995.
[2] M. White, D. Adams, and J. Bu, “on the Go with SONOS,” in IEEE Circuits Devices Mag., vol. 16, no. 4, pp. 22-31, July 2000.
[3] M. White, Y. Yang, A. Purwar, and M. French, “A Low Voltage SONOS Non-Volatile Semiconductor Memory Technology,” in Nonvolatile Memory Technology Conference, Sixth Biennial IEEE International, vol. 20, issue. 2, pp. 52-57, June 1996.
[4] J. Bu, and M. White, “Retention Reliability Enhanced SONOS NVSM with Scaled Programming Voltage,” in Proc. IEEE Aerospace Conf., vol. 5, pp. 5-2383-5-2390, 2002.
[5] K. Kahng, and S. Sze, “A Floating Gate and its Application to Memory Devices,” in IEEE Trans. Electron Devices, vol. 14, no. 9, pp. 629, September 1967.
[6] A. Wang, and W. D. Woo, “Static Magnetic Storage and Delay Line,” in J. Appl. Phys., vol. 21, no. 1, pp. 49-54, January 1950.
[7] S. M. Sze, and K. K. Ng, “Physics of Semiconductor Devices,” 3rd Ed., Wiley Interscience, Hoboken, 2007.
[8] T. Y. Tseng, and S. M. Sze, “Non-Volatile Memories Materials, Devices, and Applications,” in American Scientific Publishers, Stevenson Ranch, CA, 2012.
[9] T. H. Hsu, H. T. Lue, E. K. Lai, J. Y. Hsieh, S. Y. Wang, Y. L. Wu, Y. C. King, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu, and C. Y. Lu, “A High-Speed BE-SONOS NAND Flash utilizing the Field-Enhancement Effect of FinFET,” in IEDM Tech. Dig., pp. 913-916, December 2007.
[10] M. Heyns, S.Beckx, H. Bender, P. Blomme, W. Boullan, B. Brijs, R. Carter, M. Caymax, M. Claes, T. Cunard, S. De Gendt, R. Degraeve, A. Delabie, W. Deweerdt, G. Groeseneken, K. Henson, T. Kauerauf, S. Kubicek, L.Lucci, G. Lujan, J. Mentens, L. Pantisano, I. Petry, 0. Richard, E. Ruhr, T. Schram, W. Vandeworst, P. Van Doome, S. Van Elshocht, 1. Westlinder, T.Witters, C. Zhao, E. Cartier, J.Chen, V.Cosnier, M. Green, S.E. Jang, V. Kaushik, A. Kerber, Kluth, S. Lin, W. Tsai, E. Young, Y. Manab&, Y. Shimamoto, P. Bajolet, H.De Wine, J.W. Macs, L. Dates, D. Piques, B. CoenegrachtsA, J. Vertommenk, and S. Passefort, “Scaling of High-k Dielectrics towards Sub-1nm EOT,” in VLSI Technology, Systems, and Applications, International Symposium on, pp. 247-250, 2003.
[11] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-k Metal-Hate Stack and its MOSFET Characteristics,” in IEEE Electron Device Lett., vol. 25, no. 6, pp. 408-410, June 2004.
[12] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu, and C. Lu, “MA BE-SONOS: A Bandgap Engineered SONOS using Metal Gate and Al2O3 Blocking Layer to Overcome Erase Saturation,” in Non-Volatile Semiconductor Memory Workshop, pp. 88-89, 2007.
[13] T. Yan-Ny, W. K. Chim, B. Jin Cho, and C. Wee-Kiong, “Over-Erase Phenomenon in SONOS-type Flash Memory and its Minimization using a Hafnium Oxide Charge Storage Layer,” in IEEE Electron Device Lett., vol. 51, no. 7, pp. 1143-1147, July 2004.
[14] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. Chen, J. Ku, K. Y. Hsieh, R. Liu, and C. Y. Lu, “BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability,” in IEDM Tech. Dig., pp. 547-550, December 2005.
[15] Z. H. Ye, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin, and M. J. Tsai, “A Novel SONOS-type Flash Device with Stacked Charge Trapping Layer,” in Microelectron. Eng., vol. 86, issues 7-9, pp. 1863-1865, 2009.
[16] J. P. Colinge, I. Ferain, A. Kranti, C. W. Lee, N. D. Akhavan, P. Razavi, R. Yan, and R. Yu, “Junctionless Nanowire Transistor: Complementary Metal-Oxide- Semiconductor without Junctions,” in Sci.Adv.Mater., vol. 3, no. 3, pp. 477-482, June 2011.
[17] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy and R. Murphy, “Nanowire Transistors without Junctions,” in Nat.Nanotechnol, vol. 5, pp. 225-229, February 2010.
[18] Rui Zhang, Takashi Iwasaki, Noriyuki Taoka, Mitsuru Takenaka, and Shinichi Takagi, “High-Mobility Ge pMOSFET with 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation”, in IEEE Electron Device Lett., vol. 59, no. 2, pp. 335-341, February 2012.
[19] Y. Sun, H. Y. Yu, N. Singh, K. C. Leong, E. Gnani, G. Baccarani, G. Q. Lo, and D. L. Kwong, “Vertical-Si-Nanowire-Based Nonvolatile Memory Devices with Improved Performance and Reduced Process Complexity,” in IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1329-1335, May 2011.
[20] H. T. Lue, Y. H. Hsiao, P. Y. Du, S. C. Lai, T. H. Hsu, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, C. P. Lu, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu, and C. Y. Lu, “A Novel Buried-Channel FinFET BE-SONOS NAND Flash with Improved Memory Window and Cycling Endurance,” in VLSI Symp. Tech. Dig., pp. 224-225, June 2009.
[21] N. Yamauchi, J. J. Hajjar, and R. Reif, “Polysilicon Thin-Film Transistors with Channel Length and Width Comparable to or Smaller than the Grain Size of The Thin Film,” in IEEE Trans. Electron Devices., vol. 38, no. 1, pp. 55-60, January 1991.
[22] L. M. Weltzer, and S. K. Banerjee, “Enhanced CHISEL Programming in Flash Memory Devices with SiGe Buried Layer,” in Proc. Non-Volatile Memory Technol. Symp., pp. 31-33, November 2004.
[23] D.L.Kencke, Xin Wang, Q. Ouyang, S. Mudanai, A. Tasch , Jr., and S. K. Banjree, “Enhanced Secondary Electron Injection in Novel SiGe Flash Memory Devices,” in IEDM Tech. Dig., pp. 105-108, December 2000.
[24] Scott C. Wolfson, and Fat Duen Jo, “Transient Simulation to Analyze Flash Memory Erase Improvement Due to Germanium Content in the Substrate,” in IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2499-2503, October 2010.
[25] Chi-Chao Wang, Kuei-Shu Chang-Liao, Chun-Yuan Lu, and Tien-Ko Wang, “Enhanced Band-to-Band-Tunneling induced Hot-Electron Injection in p-Channel Flash by Band-Gap Offset Modification,” in IEEE Electron Device Lett., vol. 27, no. 9, pp. 749-751, September 2006.
[26] Li-Jung Liu, Kuei-Shu Chang-Liao, Wen-Chun Keng, and Tien-Ko Wang “Improvement on Programming and Erasing Speeds for Charge-Trapping Flash Memory Device with SiGe Buried Channel,” in Solid State Electron., vol. 54, pp. 1113-1118, 2010.
[27] Li-Jung Liu, Kuei-Shu Chang-Liao, Yi-Chuen Jian, Jen-Wei Cheng, and Tien-Ko Wang “Improvement on Programming and Erasing Speeds for Charge-Trapping Flash Memory Device with SiGe Buried Channel,” in IEEE Electron Device Lett., vol. 33, no. 9, pp. 1264-1266, September 2012.
[28] Scott C. Wolfson, and Fat Duen Ho, “Transient Simulation to Analyze Flash Memory Programming Improvement due to Germanium Content in the Substrate using Nonquasi-static Techniques,” in Microelectron. Eng., vol. 99, pp. 23-27, June 2012.
[29] B. Van Zeghbroeck, “Principles of Semiconductor Devices,” Boulder, CO: Univ. Colorado, 2007.
[30] Kuo-Nan Yang, Huan-Tsung Huang, Ming-Chin Chang, Che-Min Chu, Yuh-Shu Chen, Ming-Jer Chen, Yeou-Ming Lin, Mo-Chiun Yo, Simon M. Jang, Douglas C. H. Yu, and M. S. Liang, “A Physical Model for Hole Direct Tunneling Current in P+ Poly-Gate pMOSFETs with Ultrathin Gate Oxides,” in IEEE Trans. Electron Devices, vol. 47, no. 11, pp. 2161-2166, November 2000.
[31] S. C. Wolfson, and F. D. Ho, “Transient Simulation to Analyze Flash Memory Erase Improvements due to Germanium Content in the Substrate,” in IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2499-2503, October 2010.
[32] Dieter K. Schrodor, “Semiconductor Material and Device Charcterization,” third- edition, 2006.
[33] E. P. Raynes, C. V. Brown, and J. F. Strömer, “Method for the Measurement of the K22 Nematic Elastic Constant,” in App. Phys. Lett., vol.82, no. 1, pp.13-15, January 2003.
[34] Shoichiro Saito, Takuji Hosoi, Heiji Watanabe, and Tomoya Ono, “First-Principles Study to obtain Evidence of Low Interface Defect Density at Ge/GeO2 Interfaces,” in App. Phys. Lett., vol.95, no. 1, pp. 011908, July 2009.
[35] Joo Hyung You, Hyun Woo Kim, Dong Hun Kim, Tae Whan Kim, and Keun Woo Lee, “Effect of the Trap Density and Distribution of the Silicon Nitride Layer on the Retention Characteristics of Charge Trap Flash Memory Devices,” in IEEE Simulation of Semiconductor Processes and Devices (SISPAD), pp. 199-202, September 2011.
[36] H. Bachhofer, H. Reisinger, E. Bertagnolli, and H. von Philipsborn, “Transient Conduction in Multidielectric Silicon–Oxide–Nitride–Oxide Semiconductor Structures,” in J. Appl. Phys, vol. 89, no. 5, pp. 2791-2800, March 2001.
[37] M. Lenzlinger, and E. H. Snow, “Fowler-Nordheim Tunneling in Thermally Grown SiO2,” in J. Appl. Phys, vol. 40, issue 1, pp.278-283, September 1969.
[38] Sanjeev Kumar Gupta, Jitendra Singh, and Jamil Akhtar, “Physics and Technology of Silicon Carbide Devices,” in Tech, chapter 8, October 2012.
[39] The International Technology Roadmap for Semiconductors (ITRS)
[40] Y. Wang, and M. H. White, “An Analytical Retention Model for SONOS Nonvolatile Memory Devices in the Excess Electron State,” in Solid-State Electron., vol. 49, pp. 97-107, January 2005.
[41] Hanmant P. Belgal, Nick Righos, Ivan Kalastirsky, Jeff I. Peterson, Robert Shiner, and Neal Mielke, “A New Reliability Model for Post-Cycling Charge Retention of Flash Memories,” in Proc. IRPS, pp. 7-20, 2002.
[42] Y. Kumagai, A. Teramoto, S. Sugawa, T. Suwa, and T. Ohmi, “Statistical Evaluation for Anomalous SILC of Tunnel Oxide using Integrated Array TEG,” in Proc. IEEE Int. Reliab. Phys. Symp., pp. 219-224, April-May 2008.
[43] Taehoon Kim, Karthik Sarpatwari, Sateesh Koka, and Hongmei Wang, “Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory,” in IEEE Electron Device Lett., vol. 34, no. 3, pp. 396-398, March 2013.
[44] M. Bocquet, E. Vianello, G. Molas, L. Perniola, H. Grampeix, F. Martin, J. P. Colonna, A. M. Papon, P. Brianceau, M. Gély, B. De Salvo, G. Pananakakis, and G. Ghibaudo, “An In-depth Investigation of Physical Mechanisms Governing SANOS Memories Characteristics,” in IEEE International Memory Workshop, pp. 1-4, May 2009.
[45] A. Rothschild, L. Breuil, G. Van den bosch, O. Richard, T. Conard, A. Franquet, A. Cacciato, Debusschere, M. Jurczak, J. Van Houdt, and J. A. Kittl,“02 Post Deposition Anneal of Al203 Blocking Dielectric for Higher Performance and Reliability of TANOS Flash Memory,” in Solid State Device Research Conference, pp. 272-275, 2009.
[46] A. Paul, C. Sridhar, and S. Mahapatra, “Comprehensive Simulation of Program, Erase and Retention in Charge Trapping Flash Memories,” in IEDM Tech. Dig., pp. 393-396, 2006.
[47] S. S. Chung, S. T. Liaw, C. M. Yih, Z. H. Ho, C. J. Lin, D. S. Kuo, and M. S. Liang, “N-channel versus P-channel Flash EEPROM-which One Has Better Reliabilities,” in Proc. IEEE International Reliability Physics Symposium (IRPS), pp. 67-72, May 2001.
[48] Albert Fayrushin, Chang-Hyun Lee, Youngwoo Park, Jeong-Hyuk Choi, and Chilhee Chung, “Unified Endurance Degradation Model of Floating Gate NAND Flash Memory,” in IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 2031-2037, June 2013.
[49] Franck Nallet, “Sentaurus TCAD Introduction,” Synopsys, Paris, France, September, 2014.
[50] Sentaurus DeviceTM User Guide, Version F-2011.09, Avant Corporation, September 2011.
[51] Chun-Yuan Chen, Kuei-Shu Chang-Liao, Li-Jung Liu, Wei-Chieh Chen, and Tien-Ko Wang, “Enhanced Operation Characteristics in Poly-Si Nanowire Charge-Trapping Flash Memory Device with SiGe Buried Channel,” in IEEE Electron Device Lett, vol. 35, no. 10, pp. 1025-1027, October 2014.
[52] Li-Jung Liu, Kuei-Shu Chang-Liao, Yi-Chuen Jian, Jen-Wei Cheng, Wang Tien-Ko, and Ming-Jinn Tsai, “Enhanced Programming and Erasing Speeds in p-Channel Charge-Trapping Flash Memory Device with SiGe Buried Channel,” in IEEE Electron Device Lett., vol. 33, no. 9, pp. 1264-1266, September 2012.
[53] Lenzlinger, M., and Snow, E.H., “Fowler-Nordheim Tunneling into Thermally Grow SiO2,” in IEEE Trans. Electron Devices, vol. 15, no. 9, pp. 686-686, September 1968.
[54] W. Vandenberghe, A. Verhulst, G. Groeseneken, B. Soree, and W. Magnus, “Analytical Model for a Tunnel Field-Effect Transistor,” in IEEE MELECON, pp. 923-928, 2008.
[55] Chi-Chao Wang, Kuei-Shu Chang-Liao, Chun-Yuan Lu, and Tien-Ko Wang, “Enhanced Band-to-Band-Tunneling-induced Hot Electron Injection in p-Channel Flash by Band-Gap offset Modification,” in IEEE Electron Device Lett., vol. 27, no. 9, pp. 749-751, September 2006.
[56] J. Buckley, M. Bocquet, G. Molas, M. Gely, P. Brianceau, N. Rochat, E.Martinez, F.Martin, H. Grampeix, JP. Colonna, A.Toffoli, V. Vidal, C. Leroux, G. Ghibaudo, G. Pananakakis, C. Bongiorno, D. Corso, S. Lombardo, B. DeSalvo, and S.Deleonibus, “In-depth Investigation of Hf-based High-k Dielectrics as Storage Layer of Charge-Trap NVMs,” in IEDM Tech. Dig, pp. 1-4, December 2006.
[57] Young-Joo Song, Jung-Wook Lim, Sang-Hoon Kim, Hyun-Chul Bae, Jin-Young Kang, Kyung-Wan Park, and Kyu-Hwan Shim, “Effects of Si-cap Layer Thinning and Ge Segregation on the Characteristics of Si/SiGe/Si Heterostructure p-MOSFETs,” in Solid State Electron., vol. 46, no. 46, pp. 1983-1989, November 2002.
[58] Hai Liu, B.S., and M.S Hai Liu, “Floating Gate Engineering for Novel Nonvolatile Flash Memories,” Dissertation, The University of Texas at Austin, May 2010.
[59] V. V. Afanas’ev, A. Stesmans, A. Delabie, F. Bellenger, M. Houssa, and M. Meuris, “Electronic Structure of GeO2-passivated Interfaces of (100) Ge with Al2O3 and HfO2,” in Appl. Phys. Lett., vol.92, id.022109, January 2008.
[60] L. Lin, K. Xiong, and J. Robertson, “Atomic Structure, Electronic Structure, and Band Offsets at Ge:GeO:GeO2 Interfaces,” in Appl. Phys. Lett., vol. 97, no. 24, 242902, December 2010.
[61] Y. X. Liu, T. Mastukawa, K. Endo, S. O’uchi, J. Tsukada, H. Yamauchi, Y. Ishikawa, K. Sakamoto, and M. Masahara, “Variability Analysis of Scaled Poly-Si Channel FinFETs and Tri-gate Flash Memories for High Density and Low Cost Stacked 3D-Memory Application,” in Solid-State Device Research Conference (ESSDERC), pp. 203-206, September 2011.
[62] M. Specht, R. Kommling, L.Dreeskornfeld, W.Weher, F. Hofmann, D.Alvarez, J.Kretz, R.J.Luyken,W.Rosner, H.Reisinger, E. Landgraf, T.Schulz, J.Hartwich, M.Stadele,V.Klandievski, E. Hartmann, and L.Risch, “Sub-40nm tri-gate charge trapping nonvolatile memory cells for high-density applications,” in VLSI Symp. Tech. Dig., pp. 244-245, 2004.
[63] C. Friederich, M. Specht, T.Lutz, F. Hofmann, L. Dreeskornfeld, W.Weber, and J. Kretz, T. Melde, W. Rösner, E. Landgraf, J. Hartwich, M. Städele, L. Risch, and D. Richter, “Multi-level p+ tri-gate SONOS NAND string arrays,” in IEDM Tech. Dig., pp.1-4 , 2006.
[64] Lu Zhang, Wei He, Daniel S. H. Chan, and Byung Jin Cho, “ Multi-layer high-k Interpoly Dielectric for Floating Gate Flash Memory Devices,” in Solid State Electron , vol. 52 , no. 4 , pp. 564-570 , April 2008.
[65] Jong Jin Lee, Xuguang Wang, Weiping Bai, Nan Lu, and Dim-Lee Kwong, “Theoretical and Experimental Investigation of Si Nanocrystal Memory Device with HfO2 High-k Tunneling Dielectric,” in IEEE Trans. Electron Devices, vol. 50, no. 10, pp.2067-2072, October 2010.
[66] Gang Zhang, Won Jong Yoo, and Chung-Ho Ling, “Hot-Electron Capture for CHEI Programming in SONOS-Type Flash Memory Using High-k Trapping Layer,” in IEEE Trans. Electron Devices, vol. 55, no. 6, pp.1502-1510, June 2008.
[67] Chun-Jung Su, Tuan-Kai Su, Tzu-I Tsai, Horng-Chih Lin and Tiao-Yuan Huang,
“A junctionless SONOS nonvolatile memory device constructed with in situ doped polycrystalline silicon nanowires,” in Nanoscale Res. Lett., vol. 7, pp. 1-6,
2012.
[68] S. Jayanti, X. Yang, R. Suri, and V. Misra, “Ultimate scalability of TaN metal floating gate with incorporation of high-K blocking dielectrics for flash memory applications,” in Proc. IEEE IEDM , pp. 5.3.1-5.3.4, December 2010.
[69] Kamei, T., Matsukawa, T., Endo, K., O'uchi, S., Tsukada, J., Yamauchi, H., Ishikawa, Y., Hayashida, T., Sakamoto, K., Ogura, A., and Masahara, M., “Comparative Study of Tri-Gate- and Double-Gate-Type Poly-Si Fin-Channel Split-Gate Flash Memories,” in Silicon Nanoelectronics Workshop (SNW), pp.1-2, June 2012.
[70] Sugizaki T, Kobayashi M, Ishidao M, Minakata H, Yamaguchi M, Tamura Y, Sugiyama Y, Nakanishi T, and Tanaka H., “Novel multi-bit SONOS type flash memory using a high-k charge trapping layer,” in Proc VLSI Symp Technology Dig Technical papers, p. 27-8, 2003.
[71] Shin Y, Lee C, Hur S, Choi J, Kim K. Proc IEEE Nonvolatile Semiconductor Memory Workshop, p.58-9, 2003.
[72] Sanghun Jeon, Jeong Hee Han, Junghoon Lee, Sangmoo Choi, Hyunsang Hwang, and Chungwoo Kim, “ Impact of Metal Work Function on Memory Properties of Charge-Trap Flash Memory Devices Using Fowler-Nordheim P/E Mode,” in IEEE Electron Device Lett, vol. 27, no. 6, pp. 486-488, June 2006.
[73] A. Arreghini, F. Driussi, E. Vianello, D. Esseni, M. J. van Duuren, D. S. Golubovic, N. Akil, and R. van Schaijk, “Experimental characterization of the vertical position of the trapped charge in Si nitride-based nonvolatile memory cells,” in IEEE Trans. Electron Devices, vol. 55, no. 5, pp. 1211–1219, May 2008.
[74] P.-H. Tsai, K.-S. Chang-Liao, T.-C. Liu, T.-K. Wang, P.-J. Tzeng, C.-H. Lin, L. S. Lee, and M.-J. Tsai, “Charge-trapping-type flash memory device with stacked high-k charge-trapping layer,” in IEEE Electron Device Lett., vol. 30, no. 7, pp. 775-777, July 2009.
[75] Zong-Hao Ye, Kuei-Shu Chang-Liao, Li-Jung Liu, Jen-Wei Cheng, and Hsin-Kai Fang, “Enhanced Programming and Erasing Speeds of Charge-Trapping Flash Memory Device With Ge Channel,” in IEEE Electron Device Lett., vol. 36, no. 12, pp. 1314-1317, December 2015.
[76] Ping-Hung Tsai, Kuei-Shu Chang-Liao, Tai-Yu Wua, Tien-Ko Wang, Pei-Jer Tzeng, Cha-Hsin Lin, Lung-Sheng Lee and Ming-Jin Tsai, “Novel SONOS - type nonvolatile memory device with stacked tunneling and charge trapping layers,” in Solid-State Electron., vol. 52, no. 10, pp. 1573-1577, October 2008.
[77] B. Govoreanu, P. Blomme, M. Rosmeulen, J. Van Houdt, and K. De Meyer, “VARIOT: A Novel Multilayer Tunnel Barrier Concept for Low-Voltage Nonvolatile Memory Devices,” in IEEE Electron Device Lett., vol. 24, no. 2, pp. 99-101, February 2003.
[78] Y. H. Lu, P. Y. Kuo, Y. H. Wu, Y. H. Chen and T. S. Chao, “Novel GAA raised source / drain sub-10-nm poly-si NW channel TFTs with self-aligned corked gate structure for 3-D IC applications,” in VLSI Symp. Tech. Dig., pp. 142-143, June 2011.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *