帳號:guest(3.17.156.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇子翔
作者(外文):Su, Tzu Hsiang
論文名稱(中文):電荷汲引技術應用於鍺金氧半電晶體之界面與 邊緣缺陷分佈量測及可靠度分析
論文名稱(外文):Detection of Interface and Border Trap Distributions and Reliability Analysis for Ge MOSFETs by Charge Pumping Technique
指導教授(中文):張廖貴術
指導教授(外文):Kuei-Shu Chang-Liao
口試委員(中文):趙天生
李耀仁
口試委員(外文):Chao, Tien Sheng
Lee, Yao Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011561
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:93
中文關鍵詞:電荷汲引技術
外文關鍵詞:Charge Pumping Technique
相關次數:
  • 推薦推薦:0
  • 點閱點閱:93
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著半導體產業發展使矽電晶體的尺寸縮小已到限制,所以勢必要引入新的材料或創新的結構。由於鍺有比矽高的電子和電洞遷移率,所以被用來作為電晶體的通道材料。為了提升鍺電晶體元件的特性,有一層高品質的界面層是需要的。因此提供一個精確和快速的量測方法去偵測界面缺陷密度和深層缺陷是值得研究的主題。本論文以電荷汲引原理為基礎,提出了多種量測技術用來探測缺陷密度分佈。
第一部分為界面層氫處理與微波退火電晶體元件,可以得到經過氫處理和微波退火的元件,具有較低的界面缺陷密度,較好的界面層品質。電性上有較大的驅動電流和較低的關閉電流,在載子遷移率上也有更好的表現。而邊緣陷阱縱深分佈上,氫處理可以有效的改善縱深小於0.8 nm缺陷密度;而微波退火可以顯著的改善縱深大於1 nm的缺陷密度。
第二部分為利用電荷汲引技術去比較不同的介電層ZrO2和HfON電晶體的界面缺陷密度、邊緣陷阱密度、和應力誘發缺陷的增生。結果顯示了ZrO2元件有較高的界面缺陷密度但有較低的邊緣缺陷密度;HfON元件有較低的界面缺陷密度但有較高的邊緣缺陷密度。說明了ZrO2元件在可靠度分析上,能抑制電荷在介電層被捕捉,主要是因為具有較低的邊緣缺陷密度所致。
第三部分為利用電荷汲引技術去量測有無Hf緩衝層電晶體的界面缺陷密度、邊緣陷阱密度、和應力誘發缺陷的增生。經電荷汲引技術來看可發現有Hf緩衝層的元件,有較低界面陷阱密度和邊緣陷阱密度,得到有較佳的界面品質和介電層,而電性上也都有改善。經由NBTI和PBTI可靠度分析,從電荷汲引技術發現NBTI對界面層的破壞較嚴重;而PBTI則是在介電層有嚴重的破壞,發現有Hf緩衝層元件都有較好的表現,主要是有較好的界面層和介電層品質。
As the scaling of silicon metal-oxide-semiconductor (MOSFET) approach to its limitation with the development of semiconductor industry, novel materials and innovative device structures need to be introduced in future. Ge is promising for a channel material in MOSFET, owing to its high hole and electron mobility. A high quality interface layer is necessary to improve characteristics on Ge-MOSFETs device. Hence, an accurate and quick measurement to detect interface trap density and distribution of bulk traps should be a valuable research topic. Several measurement techniques based on the charge pumping are proposed to detect trap density distributions.
In the first study, interface layer with hydrogen treatment and microwave annealing Ge MOSFET devices obtain lower interface trap density and better interface layer quality than without one. The electrical characteristic have higher drive current, mobility, and lower off current, due to interface layer with hydrogen treatment can repair interface traps and microwave annealing can improve PN junction. On the other hand, hydrogen treatment can improve traps density less than depth about 0.8 nm and microwave annealing can obviously reduce traps density higher than depth about 1 nm from distribution profile of border traps density.
In the second study, the interface trap density, bulk density and stress induced trap generation of Ge-pMOSFETs with ZrO2 and HfON gate dielectrics are extracted and compared by CP technique. Results show that ZrO2 device has higher interface trap density but lower bulk trap density than HfON device, which implies that ZrO2 device has inferior Ge/dielectric interface but high quality dielectric bulk. The improved reliability characteristics in ZrO2 device can be attributed to the low preexisting bulk trap density which suppresses charge trapping in the dielectric bulk.
In the last study, charge pumping technique is used to detect interface and bulk trap distribution and stress induced trap generation of Ge-pMOSFETs with and without Hf buffer layer (HBL). The charge pumping technique confirm that device with HBL has lower interface and bulk traps density than device without, which show electrical characteristic can be improved. Results show that device with HBL has better performance from NBTI and PBTI reliability analysis because of it has higher quality of interface characteristics and dielectric bulk.
摘要 I
致謝 III
目錄 IV
圖目錄 XII
表目錄 XVI
第一章 序論 1
1.1 前言 1
1.2 使用High-K介電材料的原因 1
1.3 High-K介電材料的選擇 2
1.4 純鍺基板作為載子通道 4
1.5 鍺氧化物的性質 5
1.6 電荷汲引量測技術 6
1.7 論文架構 6
第二章 應用電荷汲引量測技術分析High-k介電層電晶體陷阱分佈 12
2.1研究動機 12
2.2界面陷阱密度與能量分佈 13
2.2.1 基本電荷汲引量測技術 13
2.2.2 陷阱捕捉截面(Capture Cross Section, σ)的計算 15
2.2.3 High-κ電晶體界面陷阱密度能量分佈 16
2.2.4 量測結果與討論 17
2.3邊緣陷阱密度縱深分佈的量測 18
2.3.1 高介電係數電晶體的邊緣陷阱 18
2.3.2 量測方法與量測裝置 18
2.3.3 縱深分布公式與計算 19
2.2.4量測結果與討論 21
2.4 結論 21
第三章 介面層經氫氣處理與微波退火對Ge MOSFET元件特性研究 33
3.1 研究動機 33
3.2 製程與量測 34
3.2.1 製程條件 34
3.2.2 量測參數 35
3.3 實驗結果與討論 36
3.3.1 界面層氫處理與微波退火之電晶體元件界面特性 36
3.3.2界面層氫處理與微波退火之電晶體元件負定電壓電應力 39
3.4 結論 40
第四章 不同閘極介電層ZrO2和HfON的鍺金氧半電晶體 52
4.1 研究動機 52
4.2 製程與量測 53
4.2.1 製程條件 53
4.2.2 量測參數 54
4.3 實驗結果與討論 54
4.3.1不同介電層電晶體元件之特性分析 54
4.3.2不同介電層電晶體元件之負定電壓電應力 55
4.3.3不同介電層電晶體元件之通道熱載子應力 57
4.4 結論 59
第五章 有無Hf緩衝層之MOSFET元件特性研究 70
5.1 研究動機 70
5.2製程與量測 71
5.2.1製程條件 71
5.2.2 量測參數 72
5.3實驗結果與討論 72
5.3.1有無Hf緩衝層電晶體元件之特性分析 72
5.3.2有無Hf緩衝層電晶體元件之NBTI分析 74
5.3.3有無Hf緩衝層電晶體元件之PBTI分析 75
5.4 結論 77
第六章 結論與展望 89
6.1 結論 89
6.2 未來展望 90
參考資料 91
[1]Dieter K. Schrodor, “Semiconductor Material and Device Chracterization”, third edition, 2006
[2]M. L. Green, et al., “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits”, J. Appl. Phys. Vol. 90, p. 2057, 2001
[3]H. S. Momose, et al., IEEE Trans. Electron Devices, vol. 43, p. 123, 1996
[4]E. P. Raynes, et al., “ Method for the measurement of the K22 nematic elastic constant ”, App. Phys. Lett., Vol. 82, pp. 13-15, 2003
[5]M. Houssa, et al., “Electrical Properties of High-k Gate Dielectrics: Challenges, Current Issues, and Possible Solutions”, Material Science and Engineering R, Vol. 51, pp. 37-85, 2006
[6]G. D. Wilk, et al., “High-κ gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys.Vol. 89, p. 5243, 2001
[7]S. Saito, et al., “Unified Mobility Model for High-k Gate Stacks”, Electron Devices Meeting (IEDM), 2003 IEEE International, pp. 797-800, 2003
[8]R. People and J.C Bean, “Calculation of Critical Layer Thickness Versus Lattice Mismatch ofr GexSi1-x/Si Strained-layer Heterostructures ”, App. Phys. Lett., Vol. 47, p. 322, 1985
[9]S. Saito, et al., “First-principles study to obtain evidence of low interface defect density at Ge/GeO2 interfaces ”, App. Phys. Lett., Vol. 95, p. 011908, 2009
[10]L. Lin, et al., “Atomic structure, electronic structure, and band offsets at Ge:GeO:GeO2 interfaces”, Appl. Phys. Lett., Vol.97, p. 242902, 2010
[11]R. Zhang , et al., “1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation”, IEDM Tech., 2011 IEEE International, pp. 28.3.1-28.3.4, 2011
[12]J. S. Bruglar and P. G. A. Jaspers, “Charge Pumping in MOS Device,”IEEE TED, Vol.16, pp. 297-302, 1969
[13]J.S. Bruglar and P. G. A. Jaspers, “Charge Pumping in MOS Devices,” IEEE TED, Vol.16, pp. 297-302, 1969
[14]J. P. Han, et al., “Energy Distribution of Interface Traps in High-K Gater MOSFETs,” VLSI, pp. 161-162, 2003
[15]Y. Maneglia and D. Bauza, “Extraction of slow trap concentration profiles in metal-oxide-semiconductor transistors using thr charge pumping method,” JAP, Vol. 79, pp.4187-4192, 1996
[16]S. Jakschik, et al., “Inflience of Al2O3 dielectrics on trap-depth profiles in MOS devices investigated by the charge-pumping method,” IEEE TED, Vol. 51, pp. 2252-2255, 2004
[17]Wenjuan Zhu, et al., “Mobility Measurement and Degradation Mechanisms of MOSFETs Made With Ultrathin High-k Dielectrics,” IEEE EDL, vol. 51, no. 1, pp. 98-105, 2004
[18]K. Martens et al., “Applicability of Charge Pumping on Germanium MOSFETs”, IEEE, EDL, vol.29, pp. 1364-1366, 2008
[19]Chen-Chien Li, et al., “Improved Electrical Characteristics of Ge MOS Device With High Oxidation State in HfGeOx Interfacial Layer Formed by In Situ Desorption”, IEEE EDL, vol. 35, pp. 509-511, 2014
[20]Dieter Zhang et al., “Semiconductor material and device characterization”, Third Edition, pp. 347-352, 2005
[21]Y. J. Lee, et al. “Full Low Temperature Microwave Processed Ge CMOS Achieving Diffusion-Less Junction and Ultrathin 7.5nm Ni Mono-Germanide” IEDM Tech. Dig., pp. 513-516, 2012
[22]G. Ribes, et al., IEEE Trans. Device and Materials Reliability, vol. 5, no. 1, pp. 5-19, 2005
[23]C. H. Fu, et al., Appl.Phys. Lett, vol. 101, pp. 032105-1¬¬~032105-4, 2014
[24]D. Fischer, et al., Appl. Phys. Lett., vol. 92, no. 1, 2008
[25]J. Muller, et al., Microelectron. Eng., vol. 86, no. 7-9, pp.1818-1821, 2009
[26]M. Cho, et al., IEEE EDL, vol. 34, no. 5, pp. 593-595, 2013
[27]C. Y. Lu, et al.,IEEE EDL, vol. 27, no. 10, pp. 859-862, 2006
[28]Jigang Ma, et al. “Characterization of Negative-Bias Temperature Instability of Ge MOSFETs With GeO2/Al2O3 Stack” IEEE TED, vol. 61, NO. 5, pp. 1307-1315, 2014
[29]D. Tsoutsou, et al., Microelectron. Eng. Vol. 86 pp. 1626-1628, 2009
[30]Moonju Cho, et al. “Insight Into N/PBTI Mechanisms in Sub-1-nm-EOT Devices”IEEE TED, VOL. 59, NO. 8, pp. 2042-2048, 2012
[31]F. Ji, et al. "Improved Interfacial Properties of Ge MOS Capacitor With High-k Dielectric by Using TaON/GeON Dual Interlayer," IEEE EDL, vol. 32, pp. 122-124, 2011.
[32]C. C. Li, et al. "Improved Electrical Characteristics of Ge MOS Devices With High Oxidation State in Interfacial Layer Formed by In Situ Desorption," IEEE EDL, vol. 35, pp. 509-511, 2014.
[33]蔡輔桓, “應用電荷汲引技術於先進金氧半電晶體高介電閘層之缺陷探測分析研究”, 國立清華大學工程與系統科學系, 2011
[34]X. Garros, et al. “Guidelines to improve mobility performances and BTI reliability of advanced High-K/Metal gate stacks” VLSI, pp 68-69, 2008
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *