帳號:guest(18.224.68.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張登彥
作者(外文):Chang, Teng Yen
論文名稱(中文):應用於電漿輔助原子層沉積製程之間接式電容耦合氫氣/氬氣電漿之研究
論文名稱(外文):Study of an indirect capacitively coupled hydrogen/argon plasma discharge for atomic layer deposition process
指導教授(中文):柳克強
指導教授(外文):Leou, Keh Chyang
口試委員(中文):蕭健男
柯志忠
口試委員(外文):Siao, Jian Nan
Ke, Jhin Jhong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011560
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:123
中文關鍵詞:原子層沉積電容偶合電漿氫氣/氬氣電漿模擬
外文關鍵詞:Atomic Layer Depositioncapacitively coupled plasmahydrogen/argon simulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:449
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,半導體元件尺寸越做越小,金屬氧化物製程中,尺寸小於22奈米後,半導體製程技術會面臨到很大的挑戰,所以原子層沉積技術在近年來倍感性趣,原因其ㄧ,原子層沉技術可以控制沉積的薄膜厚度是原子大小等級的尺寸,原因其二,可以藉由氣體可到達表面任何地方的特性,於非平面上也能沉積出厚度更均勻的薄膜。
本研究旨在探討氫氣/氬氣電漿環境下,參考儀科中心的儀器設計進行模擬。探討不同網層孔徑大小對於主要影響成膜的H粒子的通量密度的變化。內容包含模擬與實驗兩部分。從模擬結果在頻率為13.56 MHz的射頻電漿環境基本模擬條件下,電子密度、電子溫度、H粒子密度在0.2秒後都到達穩態。一個電壓周期內,電漿的電位分佈會隨著功率電極電位而改變,電漿與電極之間的電位差,會在靠近兩電極處產生強電場,可以加速電子來激發其餘重粒子,並使電漿中的正離子受電場加速往基板移動。
模擬結構有3個部分,分別是改變不同網層的孔徑(0.25 mm、0.5 mm、2 mm)大小隨著功率變化的模擬。隨著功率上升時,平均電位、電子密度、電子溫度隨之增加,H的通量密度到達基板數量也隨著功率而增加,代表有更多的活性粒子與前驅物反應,可以使得沉積均勻性提高,但是相對的其他離子的通量密度也隨著功率增加,意味著提高功率會帶來離子轟擊的影響也增加。
另外有做一組改變不同比例的氫氣與氬氣,隨著氫氣比例增加,可以知道H粒子的通量密度也加,可以知道氫氣比例增加會使得到達基板表面的通量更多,成膜的均勻性是否因此提升還需要考慮到離子轟擊的影響,其中H2+粒子Ar+粒子通量密度也會隨著氫氣比例而增加,離子轟擊的影響也會因此增加。
從光譜來看,Hα與Hβ特徵光譜強度隨著功率增加,強度上升;隨著壓力升高強度下降。Ar的特徵光譜也有相同趨勢。
根據本研究的模擬結果,想要讓薄膜沉積更均勻除了提高H粒子通量密度也必須同時考慮離子轟擊的影響,故需找到ㄧ個最佳的平衡點。
In the recent years, the semiconductor component size getting smaller and smaller. The metal oxide semiconductor field effect manufacturing process, after the size of less than 22 nm, the semiconductor process technology will face a big challenge. So Atomic Layer Deposition(ALD) process was interested and more popular in the recent years. There are some benefits of ALD process, one of this technology can be deposited the films at the atomic size, the other can be deposited films more uniform because of gas can be reached to anywhere of the surface, and it can also deposit on non-planar.
The purpose of this study is to investigate the argon/hydrogen plasma discharge for atomic layer deposition process. When using different size of the mesh size, the change of the H radical flux. There are two part of this study, simulation and experiment. In simulation studies, RF plasma was operated at 13.56 MHz. The electron density, electron temperature, and H number density were reached to steady state after 0.2 second. The plasma potential near two electrodes will accelerate electron and ions.
There are three parts of the simulation, changing different mesh size (0.25mm, 0.5mm, 2mm) of the structure. And then using different power to start the simulation. The simulation results, when the power increase, the electron density, electron temperature, average potential increase. H radicals flux are also increase when power increase. Representative more precursor reacted with the active radicals, so that the uniformity of the films can be improve. But relative to other ion flux increase, it means the ion bombardment effect increases.
There is another simulation which is changing input gas ratio of H2/Ar. The simulation result is that the ratio of H2/Ar increase the H radicals flux increase.
In spectrum analysis, the intensity of characteristic spectral lines of Hα and Hβ decrease when pressure increase. And argon intensity of characteristic spectral lines also the same trend.
In this simulation study, if we want to let the films more uniform, in addition to increasing H radicals flux but also need to consider the ion bombardment. So it should be find an optimum balance.
中文摘要 i
Abstract iii
致謝 v
目錄 vii
表目錄 x
圖目錄 xi
第一章 簡介 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 原子層沉積的介紹 3
2.2 腔體結構 5
2.2.1 Radical-enhance ALD 5
2.2.2 Direct plasma ALD 6
2.2.3 Remote plasma ALD 8
2.3 金屬鎳(Ni)薄膜 9
2.3.1 金屬矽化物 9
2.3.2 ALD方式沉積金屬鎳模 10
2.4 電漿模擬文獻回顧 15
第三章 研究方法與物理模型 20
3.1 電子與中性粒子 20
3.1.1 電子 20
3.1.2 離子、中性粒子 23
3.1.3 電磁場 25
3.2  幾何結構與邊界條件 26
3.2.1 幾何結構 26
3.2.2 邊界條件 27
3.3 反應式資料庫 29
3.4  起始條件 34
3.5  軟體簡介 35
3.6 電漿光譜 40
3.7 光學放射光譜儀 42
第四章 模擬結果 43
4.1 模擬條件及起始狀況 43
4.1.1 穩態的判定 45
4.1.2 一個電壓週期內電位與電場的變化 47
4.1.3 各粒子隨空間分布 48
4.2 網層孔徑0.25 mm與輸入功率的影響 51
4.2.1 輸入功率對基本放電特性的影響 51
4.2.2 輸入功率對H粒子與其他離子的密度與通量密度的影響 58
4.3 網層孔徑0.5 mm與輸入功率的影響 64
4.3.1 輸入功率對基本放電特性的影響 64
4.3.2 輸入功率對H粒子與其他離子的密度與通量密度的影響 71
4.4 網層孔徑2 mm與輸入功率的影響 77
4.4.1 輸入功率對基本放電特性的影響 77
4.4.2 輸入功率對H粒子與其他離子的密度與通量密度的影響 82
4.5 流量比的影響 88
4.5.1 流量比對基本放電特性的影響 88
4.5.2 流量比對H粒子與其他離子的密度與通量密度的影響 94
第五章 光譜量測結果 100
5.1 電漿光譜 100
第六章 結論及未來工作 103
6.1 總結 103
6.2 未來工作 105
參考文獻 106
[1] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, "Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges," Journal of Vacuum Science & Technology A, vol. 29, p. 26, Sep 2011.
[2] J. A. Kittl, A. Lauwers, O. Chamirian, M. Van Dal, A. Akheyar, M. De Potter, et al., "Ni- and Co-based silicides for advanced CMOS applications," Microelectronic Engineering, vol. 70, pp. 158-165, Nov 2003.
[3] M. Leskela and M. Ritala, "Atomic layer deposition chemistry: Recent developments and future challenges," Angewandte Chemie-International Edition, vol. 42, pp. 5548-5554, 2003 2003.
[4] K.-W. Do, C.-M. Yang, I.-S. Kang, K.-M. Kim, K.-H. Back, H.-I. Cho, et al., "Formation of low-resistivity nickel silicide with high temperature stability from atomic-layer-deposited nickel thin film," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 2975-2979, Apr 2006.
[5] H.-B.-R. Lee, S.-H. Bang, W.-H. Kim, G. H. Gu, Y. K. Lee, T.-M. Chung, et al., "Plasma-Enhanced Atomic Layer Deposition of Ni," Japanese Journal of Applied Physics, vol. 49, May 2010.
[6] H.-S. Kang, J.-B. Ha, J.-H. Lee, C. K. Choi, J. Y. Lee, and K.-M. Lee, "Effect of catalyst for nickel films for NiSi formation with improved interface roughness," Thin Solid Films, vol. 519, pp. 6658-6661, Aug 1 2011.
[7] W.-H. Kim, H.-B.-R. Lee, K. Heo, Y. K. Lee, T.-M. Chung, C. G. Kim, et al., "Atomic Layer Deposition of Ni Thin Films and Application to Area-Selective Deposition," Journal of the Electrochemical Society, vol. 158, pp. D1-D5, 2011 2011.
[8] K.-M. Lee, C. Y. Kim, C. K. Choi, S.-W. Yun, J.-B. Ha, J.-H. Lee, et al., "Interface Properties of Nickel-silicide Films Deposited by Using Plasma-assisted Atomic Layer Deposition," Journal of the Korean Physical Society, vol. 55, pp. 1153-1157, Sep 2009.
[9] P. Diomede, M. Capitelli, and S. Longo, "Effect of discharge voltage on capacitively coupled, parallel plate rf hydrogen plasmas," Plasma Sources Science & Technology, vol. 14, pp. 459-466, Aug 2005.
[10] G. J. Nienhuis, W. J. Goedheer, E. A. G. Hamers, W. vanSark, and J. Bezemer, "A self-consistent fluid model for radio-frequency discharges in SiH4-H-2 compared to experiments," Journal of Applied Physics, vol. 82, pp. 2060-2071, Sep 1 1997.
[11] J. Perrin, O. Leroy, and M. C. Bordage, "Cross-sections, rate constants and transport coefficients in silane plasma chemistry," Contributions to Plasma Physics, vol. 36, pp. 3-49, 1996 1996.
[12] A. T. Hjartarson, E. G. Thorsteinsson, and J. T. Gudmundsson, "Low pressure hydrogen discharges diluted with argon explored using a global model," Plasma Sources Science & Technology, vol. 19, Dec 2010.
[13] A. I. Florescu-Mitchell and J. B. A. Mitchell, "Dissociative recombination," Physics Reports-Review Section of Physics Letters, vol. 430, pp. 277-374, Aug 2006.
[14] T. Kimura and H. Kasugai, "Properties of inductively coupled rf Ar/H-2 plasmas: Experiment and global model," Journal of Applied Physics, vol. 107, Apr 15 2010.
[15] A. Bogaerts and R. Gijbels, "Hybrid Monte Carlo - fluid modeling network for an argon/hydrogen direct current glow discharge," Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 57, pp. 1071-1099, Jun 28 2002.
[16] O. Leroy, G. Gousset, L. L. Alves, J. Perrin, and J. Jolly, "Two-dimensional modelling of SiH4-H-2 radio-frequency discharges for a-Si : H deposition," Plasma Sources Science & Technology, vol. 7, pp. 348-358, Aug 1998.
[17] I. Mendez, F. J. Gordillo-Vazquez, V. J. Herrero, and I. Tanarro, "Atom and ion chemistry in low pressure hydrogen DC plasmas," Journal of Physical Chemistry A, vol. 110, pp. 6060-6066, May 11 2006.
[18] A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films, vol. 337, pp. 1-6, Jan 11 1999.
[19] "CFD-ACE V2010.0 Modules Manua," 2010.
[20] "CFD-ACE V2009.0 Modules Manua," 2009.
[21] M. A. Liberman and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing," Wiley, New York, 1994, 1994.
[22] 林囿延, "電漿輔助化學氣相沈積成長奈米碳纖之電漿量測與特性分析," 國立清華大學工程與系統科學系碩士論文2005.
[23] 丁宏哲, "氯氣電漿放射光譜解析," 國立清華大學工程與系統科學系碩士論文, 2002.
[24] "http://oceanoptics.com//wp-content/uploads/USB4000OperatingInstructions.pdf."
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *