|
[1] Dieter K. Schrodor, “ Semiconductor Material and Device Chracterization ”, Third edition, 2006 [2] M. L. Green, et al., “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits ”, App. Phys. Lett. Vol. 90, p.2057 , 2001 [3] E. P. Raynes, et al., “ Method for the measurement of the K22 nematic elastic constant ”, App. Phys. Lett., Vol. 82, pp. 13-15, 2003 [4] M. Houssa, et al., “ Electrical Properties of High-k Gate Dielectrics: Challenges, Current Issues, and Possible Solutions ”, Material Science and Engineering R, Vol. 51 ,pp. 37-85, 2006 [5] G. D. Wilk, et al., “High-κ gate dielectrics: Current status and materials properties considerations ”, App. Phys. Lett. Vol. 89, p. 5243 ,2001 [6] S. Saito, et al., “ Unified Mobility Model for High-k Gate Stacks ”, Electron Devices Meeting (IEDM), pp. 797-800, 2003 [7] R. People and J.C Bean, “ Calculation of Critical Layer Thickness Versus Lattice Mismatch ofr GexSi1-x/Si Strained-layer Heterostructures ”, App. Phys. Lett., Vol. 47, p. 322, 1985 [8] S. Saito, et al., “ First-principles study to obtain evidence of low interface defect density at Ge/GeO2 interfaces ”, App. Phys. Lett., Vol. 95, p. 011908, 2009 [9] Y. Morita et al., ” Two-step annealing effects on ultrathin EOT higher-k (k = 40) ALD-HfO2 gate stacks”, ESSDERC . , p. 6343338, 2012 [10] J. H. Lee et al., “ Phase control of HfO2-based dielectric films for higher-k materials ” , J. Vac. Sci. Technol. B, Vol. 32, No. 3, p.03D109 - 03D109-10, 2014 [11] S. Migita et al.’’ Design and Demonstration of Very High-k (k~50) HfO2 for Ultra-Scaled Si CMOS’’ , VLSI Technology, Symposium on Pages: 152 - 153, 2008 [12]Y. J. Lee, et al. “ 3D 65nm CMOS with 320°C Microwave Dopant Activation”, Electron Devices Meeting (IEDM), pp. 31-34 , 2009 [13]Y. L. Lu, et al. “Nanoscale p-MOS Thin-Film Transistor with TiN Gate Electrode Fabricated by Low-Temperature Microwave Dopant Activation”, Electron Device Letters, IEEE, Vol. 31, pp.437-439, 2010 [14] Y. J. Lee, et al. “Full Low Temperature Microwave Processed Ge CMOS Achieving Diffusion-Less Junction and Ultrathin 7.5nm Ni Mono-Germanide” Electron Devices Meeting (IEDM), pp.513-516, 2012 [15] Chen-Chien Li, et al. “Improved Electrical Characteristics of Ge MOS Devices With High Oxidation State in HfGeOx Interfacial Layer Formed by In Situ Desorption”, Electron Device Letters, IEEE., Vol.35 , p.509-511, 2014 [16] Akira Toriumi, et al. “Kinetic study of GeO disproportionation into a GeO2/Ge system using x-ray photoelectron spectroscopy” , App. Phys. Lett., Vol.101, p.061907 ,2012 [17] L. Lin, et al., “Atomic structure, electronic structure, and band offsets at Ge:GeO:GeO2 interfaces”, Appl. Phys. Lett., Vol.97, p. 242902, 2010 [18] R. Zhang , et al., “1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation”, Electron Devices Meeting (IEDM) pp. 28.3.1-28.3.4, 2011 [19] S. R. Amy et al., “Advanced Gate Stacks for High-Mobility Semiconductors”, Springer, Berlin, Heidelberg, Vol. 27, p. 73 , 2007 [20] X. Zou, et al., “Suppressed growth of unstable low-k GeOx interlayer in Ge metal-oxide-semiconductor capacitor with high-k gate dielectric by annealing in water vapor”, Appl. Phys. Lett. Vol. 90, p. 163502, 2007 [21] S. Rangan,et al.,”GeOx interface layer reduction upon Al-gate deposition on a HfO2/GeOx/Ge(001) stack”Appl. Phys. Lett., Vol. 92, p. 172906 - 172906-3, 2008. [22] G. Liu, et al., "Ge Incorporation in HfO2 Dielectric Deposited on Ge Substrate during Dry/Wet Thermal Annealing," J. Electrochem. Soc., Vol. 157, p. H603-H606, 2010. [23]H. Y. Yu, et al., “High quality single-crystal germanium-on-insulator on bulk Si substrates based on multistep lateral over-growth with hydrogen annealing ” , Appl. Phys. Lett. 97, p. 063503, 2010 [24] E. Cartier, et al., “Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett., Vol. 63, p. 1510–1512, 1994 [25] C. D. Young, et al., “Electron trap generation in high-/spl kappa/ gate stacks by constant voltage stress”, IEEE Deviceand Material Reliability, Vol.6, p.123,2006 [26] C. H. Lee, et al., “High-Electron-Mobility Ge/GeO2 n-MOSFETs With Two-Step Oxidation” IEEE Trans. Electron Devices, Vol. 58, p. 1295-1301, 2011 [27] Garros, X. et al., “Guidelines to improve mobility performances and BTI reliability of advanced high-k/metal gate stacks” VLSI Technology, Symposium on p. 68-69 ,2008 [28] Watanabe, H. et al., “High-quality GeON gate dielectrics formed by plasma nitridation of ultrathin thermal oxides on Ge(100)” Solid-State and Integrated Circuit Technology (ICSICT), p.867-870 ,2010 [29] T. P. Ma, “Making silicon nitride film a viable gate dielectric”, Electron Device Letters, IEEE., vol. 45, p.680, 1998. [30] R. Woltjer, et al., “Three hot-carrier degradation mechanisms in deep-submicron PMOSFET's”, IEEE Trans. Electron Devices, Vol. 42, p.109, 1995
|