帳號:guest(3.144.110.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林个惟
作者(外文):Lin, Ko Wei
論文名稱(中文):溝槽式無接面鰭式電晶體不同閘極結構之研究
論文名稱(外文):Study of Trench Junctionless Fin Field-Effect Transistors with Different Gate Structure
指導教授(中文):吳永俊
指導教授(外文):Wu, YungChun
口試委員(中文):林育賢
李耀仁
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011542
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:73
中文關鍵詞:電晶體溝槽式無接面式鰭式
外文關鍵詞:TrenchJunctionlessTransistorsFin Field-Effect Transistors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:542
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著摩爾定律的發展,短通道效應一直都是CMOS技術繼續往前的一大難題。在此研究中,我們提出了溝槽式無接面鰭式多晶矽場效電晶體的製程技術和電性量測探討,進一步改善短溝道效應帶來的影響。此溝槽式結構可以讓閘極更有效包覆通道進而增強閘極的控制能力。即使無接面式電晶體需要超薄通道厚度才能使元件達到完全空乏的條件來關閉,溝槽結構的製程技術也可以非常容易得到超薄通道。我們利用非等向性的乾式蝕刻方式來形成溝槽式超薄主動層溝槽結構,溝槽結構可以定義出超薄通道厚度並且控制閘極的長度。而且,在重摻雜形成的主動層區域可以更加有效的抑制短通道效應。
在過去,若我們想製作超薄通道的元件通常是直接沉積很薄的膜來形成多晶矽通道,但現在我們利用乾式蝕刻來形成超薄通道。溝槽技術所形成的超薄通道比直接沉積薄膜獲得比較大的晶粒尺寸和比較少的晶粒邊界。
在此篇研究中,此溝槽式無接面電晶體(trench JL-FET)具有優越的SS值111 mV dec-1和極佳的開關特性(ION/ IOFF>108),實際上量測到的DIBL值甚至小到可以忽略。溝槽式無接面電晶體(trench JL-FET)能有效的減少DIBL效應和通道長度調變效應。此外,在高電壓的操作下(超過平帶電壓),溝槽式無接面電晶體(trench JL-FET)擁有非常低的寄生電阻,這是因為在通道外的區域能帶都已形成了堆積層,此現象非常適合未來研究發展上的應用。更重要的是,此溝槽式無接面電晶體(trench JL-FET)的製程非常容易,對於先進的系統芯片(SOC)、低消耗功率元件和3D堆疊結構的應用上是非常有利的。
With the development of Moore's Law, short channel effect (SCE) has been always a serious issue for CMOS technology. This study, we describe the fabrication of a trench junctionless poly-Si fin field-effect transistor (trench JL-FET) to further improve short channel effect. This trench JL Fin-FET enhances the gate control over its silicon channel. The trench JL Fin-FET can easily to form the ultra-thin channel thickness (TCH) and control the gate length (LG) by dry etching. And, having the heavily doping channel and source/drain (S/D) regions, the SCE in JL-FET can be suppressed. Even if JL-FET requires the ultra-thin channel thickness to lead to the fully-depletion condition that would make the JL-FET turns off, the trench structure can easily integrated into the JL-FET device.
In the past, if we want to manufacture ultra-thin channel usually directly depositing the thin-film as the poly-Si channel. And now we use the dry etching to form the ultra-thin channel in JL FETs and it could get larger grain size and less grain boundary than directly depositing the thin-film.
In this study of characteristics analysis, the trench JL-FET has superior SS value about 111 mV dec-1, high ION/IOFF ratio up to 108 and practically negligible DIBL value. Trench JL Fin-FET with gated raised source/drain relieves drain-induced barrier lowering (DIBL) effect and channel length modulation effect. In addition, at a high voltage operation (over flat-band voltage of JL device), trench JL Fin-FET with gated raised source/drain reveals a low parasitic S/D resistance due to the formation of an accumulation layer at S/D, which is suit for multi-gate-oxide applications. Importantly, this trench JL Fin-FET along with simple fabrication is highly favorable for advanced system-on-chip (SOC), low power consumption applications and three-dimensional (3-D) stacked ICs applications.
中 文 摘 要 i
Abstract iii
Contents v
Figure Captions vi
Chapter 1 1
Introduction 1
1-1 THE CHALLENGE OF THE MOORE’S LAW 1
1-2 INTRODUCTION OF JUNCTIONLESS DEVICE 3
1-3 MOTIVATION 11
Chapter 2 19
Junctionless Mechanism 19
2-1 SUPERIORITY OF JUNCTIONLESS TRANSISTOR 19
2-2 BASIC PRINCIPLE OF JUNCTIONLESS TRANSISTOR 20
2-3 SHORT CHANNEL EFFECT (SCE) IN JUNCTIONLESS TRANSISTOR 28
Chapter 3 30
Device Fabrication and Simulation 30
3-1 DEVICE FABRICATION PROCESS 30
3-2 DEVICE SIMULATION 32
Chapter 4 34
Results and Discussion 34
4-1 THE PHYSICAL CHARACTERISTICS ANALYSIS (AFM/SEM/TEM) 34
4-2 THE DEVICE CHARACTERISTICS ANALYSIS 38
4-3 DEVICE TEMPERATURE PERFORMANCE 45
Chapter 5 48
Conclusion 48
Reference 50
Chapter 1

1-1. Cicret Bracelet, the Smartphone displays on your skin, from (http://www.consumerlab.es/cicret-bracelet-smartphone-displays-skin/#sthash.Z8oe4kZM.dpuf)
1-2. Moore's Law is coming to an end, from (http://www.phonearena.com/news/Moores-Law-is-coming-to-an-end_id54127)
1-3. C. W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, & J. P. Colinge, “High-temperature performance of silicon junctionless MOSFETs”. Electron Devices, IEEE Transactions on, 57(3), 620-625, 2010.
1-4. C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain & J. P. Colinge, “Junctionless multigate field-effect transistor”. Applied Physics Letters, 94 (5), 053511, 2009.
1-5. J. P. Colinge, C. W. Lee, A. Afzalian, N. Dehdashti, R. Yan, I. Ferain & R. Murphy, “SOI gated resistor: CMOS without junctions”. IEEE International SOI Conference, 2009.
1-6. J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain & R. Murphy, “Nanowire transistors without junctions”. Nature nanotechnology, 5(3), 225-229, 2010.
1-7. P. Singh, N. Singh, J. Miao, W. T. Park & D. L. Kwong, “Gate-all-around junctionless nanowire MOSFET with improved low-frequency noise behavior”. Electron Device Letters, IEEE, 32(12), 1752-1754, 2011.
1-8. H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito & A. Nitayama, “Bit cost scalable technology with punch and plug process for ultra-high density flash memory”. VLSI Technology, IEEE Symposium on (pp. 14-15). IEEE, 2007.
1-9. H. C. Lin, C. I. Lin, Z. M. Lin, B. S. Shi & T. Y. Huang, “Characteristics of planar junctionless poly-Si thin-film transistors with various channel thickness”. Electron Devices, IEEE Transactions on, 60(3), 1142-1148, 2013.
1-10. B. Kim, S. H. Lim, S. H. Kim, T. Nakanishi, S. Yang, J. Y. Ahn & C. J. Kang, “Investigation of ultra-thin polycrystalline silicon channel for vertical NAND flash”. Reliability Physics Symposium (IRPS), 2011 IEEE International (pp. 2E-4). IEEE, 2011.
1-11. S. Migita, Y. Morita, T. Matsukawa, M. Masahara & H. Ota, “Experimental demonstration of ultrashort-channel (3 nm) junctionless FETs utilizing atomically sharp V-grooves on SOI”. Nanotechnology, IEEE Transactions on, 13(2), 208-215, 2014.

Chapter 2

2-1. J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain & R. Murphy, “Nanowire transistors without junctions”. Nature nanotechnology, 5(3), 225-229, 2010.
2-2. C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain & J. P. Colinge, “Junctionless multigate field-effect transistor”. Applied Physics Letters, 94(5), 053511, 2009.
2-3. E. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C. Y. Yang & D. Kyser, “FinFET scaling to 10 nm gate length”. Electron Devices Meeting. IEDM. International (pp. 251-254). IEEE, 2002.
2-4. T. C. Liao, S. W. Tu, M. H. Yu, W. K. Lin, C. C. Liu, K. J. Chang & H. C. Cheng, “Novel gate-all-around poly-Si TFTs with multiple nanowire channels”. Electron Device Letters, IEEE, 29(8), 889-891, 2008.
2-5. C. J. Su, T. I. Tsai, Y. L. Liou, Z. M. Lin, H. C. Lin & T. S. Chao, “Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels”. Electron Device Letters, IEEE, 32(4), 521-523, 2011.
2-6. N. Singh, K. D. Buddharaju, S. K. Manhas, A. Agarwal, S. C. Rustagi, G. Q. Lo & D. L. Kwong, “Si, SiGe nanowire devices by top–down technology and their applications”. Electron Devices, IEEE Transactions on, 55(11), 3107-3118, 2008.
2-7. E. Gnani, A. Gnudi, S. Reggiani & G. Baccarani, “Theory of the junctionless nanowire FET”. Electron Devices, IEEE Transactions on, 58(9), 2903-2910, 2011.
2-8. S. J. Choi, D. I. Moon, S. Kim, J. P. Duarte & Y. K. Choi, “Sensitivity of threshold voltage to nanowire width variation in junctionless transistors”. Electron Device Letters, IEEE, 32(2), 125-127, 2011.
2-9. H. B. Chen, Y. C. Wu, C. Y. Chang, M. H. Han, N. H. Lu & Y. C. Cheng, “Performance of GAA poly-Si Nanosheet (2nm) channel of Junctionless Transistors with ideal Subthreshold Slope”. VLSI Technology (VLSIT), Symposium on (pp. T232-T233). IEEE, 2013.
2-10. H. C. Lin, C. I. Lin & T. Y. Huang, “Characteristics of n-type junctionless poly-Si thin-film transistors with an ultrathin channel”. Electron Device Letters, IEEE, 33(1), 53-55, 2012.
2-11. H. C. Lin, C. I. Lin, Z. M. Lin, B. S. Shie & T. Y. Huang, “Characteristics of planar junctionless poly-Si thin-film transistors with various channel thickness”. Electron Devices, IEEE Transactions on, 60(3), 1142-1148, 2013.
2-12. M. S. Yeh, Y. C. Wu, M. H. Wu, Y. R. Jhan, M. H. Chung & M. F. Hung, “High performance ultra-thin body (2.4 nm) poly-Si junctionless thin film transistors with a trench structure”. Electron Devices Meeting (IEDM), IEEE International (pp. 26-6), 2014.
2-13. A. Dixit, A. Kottantharayil, N. Collaert, M. Goodwin, M. Jurczak & K. D. Meyer, “Analysis of the parasitic S/D resistance in multiple-gate FETs”. Electron Devices, IEEE Transactions on, 52(6), 1132-1140, 2005.
2-14. R. T. Doria, R. D. Trevisoli & M. A. Pavanello, “Impact of the Series Resistance in the IV Characteristics of nMOS Junctionless Nanowire Transistors”. ECS Transactions, 39(1), 231-238, 2011.
2-15. J. P. Colinge, F. Balestra, J. P. Raskin, F. Gamiz & V. S. Lysenko, (Eds.), Semiconductor-on-insulator materials for nanoelectronics applications. Springer. Chapter 10, pp.187, 2011.
2-16. C. W. Lee, I. Ferain, A. Kranti, N. D. Akhavan, P. Razavi, R. Yan & J. P. Colinge, “Short-channel junctionless nanowire transistors”. In Proc. SSDM (pp. 1044-1045), 2010.

Chapter 3
3-1. User’s Manual for Synopsys Sentaurus Device.
3-2. TCAD Sentaurus Device, Ver. E-2010.12, Synopsys, Inc., Mountain View, CA, USA, Mar. 2011.

Chapter 4
4-1. M. Sinha, R. T. P. Lee, E. F. Chor & Y. C. Yeo, “Contact resistance reduction technology using aluminum implant and segregation for strained p-FinFETs with silicon–germanium source/drain”. Electron Devices, IEEE Transactions on, 57(6), 1279-1286, 2010.
4-2. C. W. Chen, C. T. Chung, J. Y. Tzeng, P. S. Chang, G. L. Luo & C. H. Chien, “Body-Tied Germanium Tri-Gate Junctionless PMOSFET with In-Situ Boron Doped Channel”. Electron Device Letters, IEEE, 35(1), 12-14, 2014.
4-3. D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, New York (1990).
4-4. TCAD Sentaurus Device, Ver. E-2010.12, Synopsys, Inc., Mountain View, CA, USA, Mar. 2011.
4-5. K. I. Goto, T. H. Yu, J. Wu, C. H. Diaz & J. P. Colinge, “Mobility and screening effect in heavily doped accumulation-mode metal-oxide-semiconductor field-effect transistors”. Applied Physics Letters, 101(7), 073503, 2012.
4-6. C. W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan & J. P. Colinge, “High-temperature performance of silicon junctionless MOSFETs”. Electron Devices, IEEE Transactions on, 57(3), 620-625, 2010.
4-7. K. Lee, J. S. Choi, S. P. Sim & C. K. Kim, “Physical understanding of low-field carrier mobility in silicon MOSFET inversion layer”. Electron Devices, IEEE Transactions on, 38(8), 1905-1912, 1991.
4-8. J. H. Schön, & B. Batlogg, “Modeling of the temperature dependence of the field-effect mobility in thin film devices of conjugated oligomers”. Applied physics letters, 74(2), 260-262, 1999.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *