帳號:guest(3.149.234.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱品彥
作者(外文):Chu, Pin Yen
論文名稱(中文):均溫板性能量測參數之影響研究
論文名稱(外文):Verification of the vapor chamber standard test and the establishment of the test parameters
指導教授(中文):林唯耕
指導教授(外文):Lin, Wei Keng
口試委員(中文):林鴻文
鄒蘊明
口試委員(外文):Lin, Hong Wen
Zou, Yun Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011529
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:150
中文關鍵詞:熱管均溫板熱阻標準測試
外文關鍵詞:Heat pipeVapor chamberThermal resistanceStandard test
相關次數:
  • 推薦推薦:0
  • 點閱點閱:352
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以建立均溫板之標準實驗架設並制定均溫板性能參數為目標,以供學界與業界作參考。同時以熱擴散率量測系統測量均溫板之熱擴散率。目的與為熱管建立一套性能量測與標準一致,並設計均溫板性能實驗平台與熱擴散量測平台,此兩平台均以Visual Basic和PLC可程式控制器開發出一套熱擴散量測程式來對均溫板做可行性之研究。本實驗以冷凝水套式整體測試機台架構與實驗,探討實驗架設之接觸熱阻,導熱元件之熱擴散效應兩者對對整體熱阻值與表面溫度之影響,並使用不同治具探討其數值,以提高實驗精確度。接著使用熱擴率量測平台,對均溫板進行熱擴散率量測實驗。冷凝水套之實驗架設中,實驗儀器有無流道之冷凝水套(Type A),有流道之冷凝水套(Type B),測溫銅塊、電木支撐塊與鋁製夾具。目前以無測溫銅塊、無電木支撐塊、有流道之冷凝水套,使用鋁製夾具之實驗架設能得到最佳實驗數值。以最佳之實驗架設測得之非對稱型均溫板之最佳軸向熱阻值為0.135℃/W,對稱型均溫板之最佳軸向熱阻值為0.031℃/W。在30X30X14.15mm3之加熱銅塊面積上,使用90X90X14.15mm3之待測銅塊因具有散熱作用,其軸向熱阻值與表面溫度均較30X30X14.15mm3之待測銅塊低。熱擴散率量測平台之實驗結果顯示非對稱型均溫板在X軸之熱擴散率為16.977cm2/s,為一般之紅銅塊之14.51倍。在Y軸之熱擴散率為21.852cm2/s,為一般之紅銅塊之18.67倍。此數據皆符合均溫板該有之物理熱傳現象。
To make a criterion like heat pipe’s one, this research experiments include the establishment of a system to measure axial thermal resistance and thermal diffusion rate of a vapor chamber. This system uses Visual Basic and PLC controller to test performance of vapor chamber. This research experiments will observe contact resistance and thermal resistance with TJ.Surface for thermal elements which use water jacket for thermal diffusion. Then, the research will improve the accuracy by using different fixtures and discusses values in different conditions. Further, the research will use thermal diffusivity measurement system to test thermal diffusion rate for vapor chamber. Using a water jacket as an example, the lab equipment include a water jacket without flow channel (Type A), a water jacket with flow channel (Type B), a copper block with thermal couples and an aluminum clamp. The research shows that the experiment with an aluminum clamp, Type B water jacket without bakelite and a copper block will get the best performance. Using symmetrical vapor chamber with the best establishment of water jacket experiment shows that thermal resistance is 0.135℃/W, while using non-symmetrical vapor chamber shows that thermal resistance is 0.031℃/W. For thermal diffusion experiment, using a 30X30X14.15mm3 heater as an example, the result shows that the performance of the thermal resistance and surface temperature are better while using a 90X90X14.15 mm3 copper block rather than a 30X30mm2 copper block. The copper block which is 90X90X14.15mm3 can get lower value of thermal resistance and the surface temperature. For thermal diffusion rate, using non-symmetrical vapor chamber shows that thermal diffusion rate for X-coordinate is 16.977 W/m2, which is about fifteen times greater than standard value of copper. Thermal diffusion rate for Y coordinate is 21.852 W/m2, which is about eighteen times greater than the standard value of copper.
摘要 I
Abstract II
致謝 IV
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3文獻回顧 3
第二章 實驗理論 17
2.1以冷凝水套為冷卻系統之實驗理論 17
2.2熱擴散率量測理論 21
2.3接觸熱阻實驗理論 24
2.4熱擴散對軸向熱阻值之差異 27
第三章 實驗設計和實驗設備 28
3.1實驗設計 28
3.1.1以冷凝水套為冷卻系統之實驗架設 28
3.1.2量測接觸熱阻之實驗 32
3.1.3熱擴散率校正實驗 33
3.1.4 均溫板性能量測與熱擴散系統量測平台量測程式設計 34
3.2實驗設備 36
3.2.1以冷凝水套為冷卻系統之實驗儀器 36
3.2.2量測接觸熱阻與熱擴散之實驗儀器 43
3.2.3熱擴散率量測儀器 44
第四章 實驗結果與討論 47
4.1不同加熱器之加熱源模擬結果 47
4.2以冷凝水套為冷卻系統之實驗結果 54
4.2.1有測溫銅塊、無電木支撐塊、非對稱型均溫板,固定水流量及入水口溫度Tin之實驗結果(適用於水冷式散熱) 54
4.2.2無測溫銅塊、無電木支撐塊、非對稱型均溫板,固定水流量及入水口溫度Tin之實驗結果(適用於水冷式散熱) 56
4.2.3無測溫銅塊、有電木支撐塊、非對稱型均溫板、Type A水套, 固定水流量及入水口溫度Tin之實驗結果(適用於水冷式散熱) 59
4.2.4無測溫銅塊、有電木支撐塊、非對稱型均溫板、Type B水套,固定水流量與入水口溫度Tin之實驗結果(適用於水冷式散熱) 61
4.2.5無測溫銅塊、無電木支撐塊、有鋁板夾具、非對稱型均溫板、Type B 水套,固定水流量及入水口Tin之實驗結果(適用於水冷式散熱) 64
4.2.6無測溫銅塊、無電木支撐塊、有鋁板夾具、對稱型均溫板、Type A水套實驗,固定水流量及入水口溫度Tin結果(適用於水冷式散熱).. 66
4.2.7無測溫銅塊、無電木支撐塊、有鋁板夾具、對稱型均溫板、Type B 水套實驗,固定水流量及入水口溫度Tin結果(適用於水冷式散熱) .69
4.2.8無測溫銅塊、無電木支撐塊、有鋁板夾具、對稱型均溫板、Type B水套,固定TC溫度之實驗結果(適用於鰭片風冷式散熱) 72
4-3接觸熱阻值與熱擴散之實驗結果 74
4-4熱擴散率量測結果 81
第五章 結論 84
參考文獻 86
附錄A 89
附錄B 102
附錄C 126
[1]中國國家標準化管理委員會,中華人民共和國國質量監督檢驗檢疫總局,「熱管術語」,中華人民共和國國家標準,GB/T 14811-2008,ICS 27.060.30
[2]中國國家標準化管理委員會,中華人民共和國國質量監督檢驗檢疫總局,「熱管傳熱性能是驗方法」,中華人民共和國國家標準,GB/T 14812-2008,ICS 27.060.30
[3]中國國家標準化管理委員會,中華人民共和國國質量監督檢驗檢疫總局,「熱管壽命試驗方法」, 中華人民共和國國家標準,GB/T 14813-2008,ICS 27.060.30
[4]中國國家標準化管理委員會,中華人民共和國國質量監督檢驗檢疫總局,「熱管術語」,中華人民共和國國家標準,GB/T 24767-2009,ICS 27.160.77,140.75
[5]M. Mochizuki, Y. Saito, F. Kiyooka, T. Nguyen, “The way we were and are going on cooling high power processors in the industries, The Seventh International Symposium in Transport Phenomena”, Toyama, Japan, September4-8,2006.
[6]K. Grubb, CFD modeling of a Therma-Base heat sink, 8th International FLOTHERM User Conference,1999.
[7]S.-C. Wong K,-C. Hsieh, J.-D. Wu, Wu.-L. Han, “A novel vapor chamber and its performance “,submitted to Int. J. Heat Mass Transfer53(2010)2377-2384.
[8]S.-C. Wong K,-C. Hsieh, J.-D. Wu, Wu.-L. Han,” Experiments on a novel vapor chamber”, ITHERM 2008 Conference, Orlando, FL, USA, May 28-31,2008.
[9]R. Boukhanouf, A. Haddad, M.T. North, C. Buffone,” Experimental investigation of a flat plate heat pipe performance using IR thermal imaging”, Applied Thermal Engineering 26(2006)2148-2156.
[10]J. Wei, Challenges in cooling design of CPU packages for high-performance servers, Heat Transfer Engineering 29 (2008)178-187.
[11]G.S. Hwang, Y. Nam, E. Fleming, P. Dussinger, Y.S. Ju, M. Kaviany, Multi-artery heat pipe spreader experiment, Int. J. Heat Mass Transfer 53(2010)-2662-2669.
[12]G.P. Peterson, Y. Wang, C. Li, “Evaporation/Boiling in thin capillary wicks (ɪ)-wick thickness effect”, ASME Journal of Heat Transfer 128(2006)1312-1319.
[13]G.P. Peterson, C. Li, “Evaporation/Boiling in thin capillary wicks (П)-effects of volumetric porosity and mesh size , ASME Journal of Heat Transfer 128(2006)1320-1328.
[14]Y. Wang, G.P. Peterson, “Investigation of a novel flat heat pipe”, ASME Journal of Heat Transfer 125(2003)644-652.
[15]M.A. Hanlon, H.B. Ma, “Evaporation heat transfer in sintered porous media”, ASME Journal of Heat Transfer 125(2003)644-652.
[16]Y. Wang, K. Vafai, “An experimental investigation of thermal performance of an asymmetrical flat plate heat pipe” , Int. J. Heat Mass Transfer 43(2000) 2657-2668.
[17]M. Mochizuki, T. Nguyen, Y. Saito, Y. Horiuchi, K. Mashiko, T. Tanaphan, and Y. Kawahara,” Latest vapor chamber technology for computer”, The 8th International Heat pipe Symposium, Japan, September,2006.
[18]H. Agata, F. Kiyooka, M. Mochizuki, K. Mashiko, Y. Saito, Y. Kawahara, T. Nguyen,” Advance thermal solution using vapor chamber technology for cooling high performance desktop CPU in notebook computer”, The 1st International Symposium on Micro & Nano Technology, Honolulu, Haiwaii, USA, March 4-17, 2004.
[19]Bridgman, P. W, “Thermal conductivity and compressibility of several rocks under high pressures”, Am. J. Sci., Ser. 5, 7, 81-102, 1924.
[20]Birch, F., and H. Clark, “The thermal conductivity of rocks and its dependence upon temperature and composition”, Am. J. Sci., 238, 529-558, 1940.
[21]Clark, H, “The effects of simple compression and wetting on the thermal conductivity of rocks”, Trans. Am. Geophys. Union, 22, 543-544, 1941.
[22]Sidles, P.H., and G. C. Danielson,”Thermal diffusivity of metals at high temperatures”, J. Appl. Phys., 25, 58-66,1954.
[23]Kingery, W.D., and M. C. McQuarrie, “Thermal conductivity: 1, Concepts of measurement and factors affecting thermal conductivity of ceramic materials”, J. Am. Ceramic Soc., 37, 67-72, 1954.
[24]Kingery, W.D., “Property Measurements at High Temperatures, edited by W. D. Kingery”, pp. 100-117, John Wiley & Sons, New York, 1959.
[25]Wray, K. L., and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures”, J. Appl. Phys., 30, 1702-1705, 1959.
[26]Nii, “Measuring method of thermal conductivity of semiconductors”, Electrical Communication Laboratory Technical Journal, 9, 817-825, 1960.
[27]Horn, F., and H. Wilski, “Messung der Temperaturitfahigkeit mit Hilfe von Zylindrischen Warmewellen”, Chemie-Ingenieur-Technik, 35, 19-25, 1963.
[28]Kawada, K, “Studies of the thermal state of the earth, 15., Variation of thermal conductivity of rocks”, 1, Bull. Earthquake Res. Inst. Tokyo Univ., 42, 631-647, 1964.
[29]Mirkovich, V. V., “Comparative method and choice of standards for thermal conductivity determinations”, J. Am. Ceramic Soc., 48, 387-391, 1965.
[30]Hughes, D.S., and F. Sawin, “Thermal conductivity of dielectric solids at high pressure”, Phys. Rev., 161, 861-863, 1967.
[31]Tomokiyo, A., and T. Okada, “Determination of thermal diffusivity by the temperature wave method”, Japanese Journal of Applied Physics, 7, 128-134, 1968.
[32]Hiroo Kanamori, Hitoshi Mizutani, Naoyuki Fuji, “Method of Thermal Diffusivity Measurement”, Journal of Physics of Earth, Vol. 17, No.1, 1969.
[33]J.E. Parrott and A.D. Stuckes, “Thermal Conductivity of Solids”, Pion Limited, London, 1975.
[34]G. Wagoner, K.A. Skokova* and C.D. Levan*, Angstrom’s method for thermal property measurements of carbon fibers and composites“, Wagoner Enterprises, Inc. 26564 Lake Road, Bay Village, OH 44140, *BP Amoco Polymers, Inc., 4500 McGinnis Ferry Road, Alpharetta, GA 30005, 1999.
[35]M.Pilar Utrillas, Roberto Pedros, Jose A. Martinez-Lozano, “A new method for determining the angstrom Turbidity coefficient from broadband filter measurements” Manuscript received 13 November 1998, in final form 30 June 1999.
[36]Andrew M. Bouchard, “Angstrom’s Method of Determining Thermal Conductivity”, Physics Department, The College of Wooster, Ohio 44691 May 4, 2000.
[37]Amy L. Lytle, “ Angstrom method of Measuring Thermal Conductivity”, Physics Department, The College of Wooster, Ohio 44691 May 5, 2000.
[38]姚漢洲,「以Angstorm method量測均溫板之可行性研究」,國立清華大學工程與系統科學所,碩士論文.,中華民國一零二年
(此全文未開放授權)
電子全文檔
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *