帳號:guest(13.59.72.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭婷云
作者(外文):Hsiao, Ting Yun
論文名稱(中文):全光域釕金屬光敏染料合成及探討其在染敏太陽能電池的應用
論文名稱(外文):Synthesis of Panchromatic Ru(II) Sensitizers and Fabrication of Dye-Sensitized Solar Cells
指導教授(中文):開執中
歐陽汎怡
指導教授(外文):Kai, Ji Jung
Ouyang, Fan Yi
口試委員(中文):季昀
衛子健
口試委員(外文):Chi, Yun
Wei, Tzu Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011524
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:120
中文關鍵詞:染敏太陽能電池釕金屬錯合物
外文關鍵詞:dye-sensitized solar cellruthenium complex
相關次數:
  • 推薦推薦:0
  • 點閱點閱:473
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
在本論文中分為兩個部分進行探討,皆為改良black dye (N749) 結構之三牙配位釕金屬錯合物。
第一部分為一系列全光域吸收的釕金屬錯合物,以thiophene官能團修飾isoquinoline pyrazolate作為雙牙配位基、thiocyanate單牙配位基、三牙配位的terpyridine作為錨基,並將2-dodecylthienyl取代基修飾在isoquinoline的不同位置上,此系列染料在光譜的400~800 nm的分子吸收係數明顯高於比對染料black dye,使其在可見光及紅外光的部分擁有更佳的光捕獲性質,提升了元件效率表現。
第二部分為具高穩定性、無thiocyanate配位基的雙三牙釕金屬錯合物,利用三牙結構的配位基不但可以避免像thiocyanate具異構物,使合成產率提升,且在元件上擁有較好的長效性。並以烷基官能團取代過去常用之高共軛官能團,降低合成複雜度與原料、人事成本,提升商業化可行性,並做不同烷基官能團的修飾對元件表現的影響,最後對此系列染料做長效測試及成本分析。

This work separated into two parts, both of them improved from the structure of black dye (N749).
In part I, here reports a new series of panchromatic Ru(II) terpyridine sensitizers which possess thienyl functionalized isoquinoline pyrazolate chelates, along with tridentate terpyridine anchor and monodentate thiocyanate ligand. The 2-dodecylthienyl substituent was modified at various sites of isoquinoline moiety. These new sensitizers exhibit significantly higher molar extinction coefficients at 400-800 nm versus N749 reference complex, leading better light-harvesting capability across visible and near infrared region (NIR), giving a superior performance to DSC cells.
In part II, A series of bis-tridentate and thiocyanate-free Ru(II) sensitizers with high stability were designed. Tridentate ligands were substituted for three thiocyanate ligands, which not only avoided thiocyanate linkage isomerism to increase the yield but also enhanced the lifespan of as-fabricated solar cell device. Different from previous extended-conjugation structure, here attached small alkyl groups to azolate chelates to reduce synthesis process and cost, leading to more opportunities for commercial application. Moreover, different alky-substituted tridentate chelates showed different device performance. At last, the stability test and synthesis cost analysis has been done.
摘要 i
第一章、序論 1
第一節、前言 1
第二節、DSSC基本工作原理 4
第三節、DSSC元件結構與組成 6
1-3-1. TiO2光陽極: 6
1-3-2. 染料分子 (dye): 8
1-3-3. 電解液 (electrolyte): 8
1-3-4. 對電極 (counter electrode): 12
1-3-5. 透明導電薄膜 (transparent conducting film, TCO): 14
第四節、DSSC元件參數 15
1-4-1. 基本光電參數 15
1-4-2. 電子在TiO2的傳輸及復合 18
1-4-3. 染料藉電解液的再生與還原 19
第五節、DSSC染料發展 20
1-5-1. 純有機染料 21
1-5-2. 以Zn為中心金屬仿葉綠素的紫質染料 24
1-5-3. 有機金屬錯合物染料 26
第六節、研究動機 42
第二章、分析儀器與實驗步驟 43
第一節、分析儀器 43
1. 核磁共振光譜 (Nuclear Magnetic Resonance, NMR) 43
2. 質譜分析 (Mass Spectrometer, MS) 43
3. 元素組成分析 (Elemental Analysis, EA) 43
4. 紫外-可見光光譜儀 (Ultraviolet-Visible Spectrometer, UV-Vis) 44
5. 螢光光譜儀 (Fluorescence Spectrophotometer, PL) 44
6. 循環伏安法 (Cyclic Voltammeter, CV) 44
7. 暫態光電流與電壓量測系統 (恆電位儀, Autolab) 44
8. 電流-電壓曲線量測 (J-V Curve Measurement) 45
9. 入射光電轉化效率 (IPCE Measurement) 45
第二節、配位基合成 46
2-2-1. 合成 (L1) 46
2-2-2. 合成 (L2) 51
2-2-3. 合成 (L3) 53
2-2-4. 合成 (L4) 57
2-2-5. 合成 (L5) 58
2-2-6. 合成 (L6) 59
第三節、錯合物合成 61
2-3-1. 合成PRT-31~33系列Ru(L)(H2tctpy)(NCS) 錯合物 61
2-3-2. 合成TF系列Ru(L)(H3tctpy) 錯合物 65
第四節、染料敏化太陽能電池元件製作 68
2-4-1. TiO2 奈米粉體及其漿料製備 68
2-4-2. 光陽極 68
2-4-3. Pt 對電極 69
2-4-4. 電解質 69
2-4-5. 元件組裝 69
第三章、結果與討論 70
第一部分、PRT系列 Ru(L)(H3tctpy)(NCS) 錯合物 70
3-1-1. 染料設計概念與合成鑑定 70
3-1-2. PRT-31~33系列光物理性質 76
3-1-3. PRT-31~33系列電化學性質與能階圖 79
3-1-4. PRT-31~33系列元件製備與探討 81
第二部分、TF系列Ru(L)(H3tctpy) 錯合物 89
3-2-1. 染料設計概念與合成鑑定 89
3-2-2. TF系列光物理性質 91
3-2-3. TF系列電化學性質 94
3-2-4. TF系列元件製備與探討 96
3-2-5. TF系列元件長效穩定性探討 101
3-2-6. TF-tBu優勢分析 103
第四章、結論 111
第五章、未來展望 112
參考文獻 113
[1] S.-W. Wang, C.-C. Chou, F.-C. Hu, K.-L. Wu, Y. Chi, J. N. Clifford, E. Palomares, S.-H. Liu, P.-T. Chou, T.-C. Wei and T.-Y. Hsiao, "Panchromatic Ru(II) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells" J. Mater. Chem. A, 2014, 2, 17618-17627.
[2] C. C. Chou, K. L. Wu, Y. Chi, W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin and P. T. Chou, "Ruthenium(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells" Angew. Chem. Int. Edit., 2011, 50, 2054-2058.
[3] D. M. Chapin, C. S. Fuller and G. L. Pearson, "A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power" J. Appl. Phys., 1954, 25, 676-677.
[4] B. Oregan and M. Gratzel, "A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films" Nature, 1991, 353, 737-740.
[5] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho and M. Gratzel, "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers" J. Am. Chem. Soc., 2005, 127, 16835-16847.
[6] N. G. Park, J. van de Lagemaat and A. J. Frank, "Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells" J. Phys. Chem. B, 2000, 104, 8989-8994.
[7] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%" Thin Solid Films, 2008, 516, 4613-4619.
[8] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, "Dye-Sensitized Solar Cells" Chem. Rev., 2010, 110, 6595-6663.
[9] G. Boschloo, S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun and A. Hagfeldt, "Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells" J. Am. Chem. Soc., 2010, 132, 16714-16724.
[10] Y. M. Cao, J. Zhang, Y. Bai, R. Z. Li, S. M. Zakeeruddin, M. Gratzel and P. Wang, "Dye-sensitized solar cells with solvent-free ionic liquid electrolytes" J. Phys. Chem. C, 2008, 112, 13775-13781.
[11] Y. Bai, Y. M. Cao, J. Zhang, M. Wang, R. Z. Li, P. Wang, S. M. Zakeeruddin and M. Gratzel, "High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts" Nat. Mater., 2008, 7, 626-630.
[12] N. Kopidakis, N. R. Neale and A. J. Frank, "Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: Evidence for surface passivation" J. Phys. Chem. B, 2006, 110, 12485-12489.
[13] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): The case of solar cells using the I-/I3- redox couple" J. Phys. Chem. B, 2005, 109, 3480-3487.
[14] N. Papageorgiou, W. F. Maier and M. Gratzel, "An iodine/triiodide reduction electrocatalyst for aqueous and organic media" J. Electrochem. Soc., 1997, 144, 876-884.
[15] T. C. Wei, C. C. Wan and Y. Y. Wang, "Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells" Appl. Phys. Lett., 2006, 88, 103122.
[16] J.-L. Lan, C.-C. Wan, T.-C. Wei, W.-C. Hsu, C. Peng, Y.-H. Chang and C.-M. Chen, "Improvement of Photovoltaic Performance of Dye-Sensitized Solar Cell by Post Heat Treatment of Polymer-Capped Nano-Platinum Counterelectrode" Int. J. Electrochem. Sci, 2011, 6, 1230-1236.
[17] T.-C. Wei, C.-C. Wan, Y.-Y. Wang, C.-m. Chen and H.-s. Shiu, "Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum Nanoclusters on Indium-Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells" J. Phys. Chem. C, 2007, 111, 4847-4853.
[18] E. Ramasamy, W. J. Lee, D. Y. Lee and J. S. Song, "Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I-3(-)) reduction in dye-sensitized solar cells" Electrochem. Commun., 2008, 10, 1087-1089.
[19] H. N. Tsao, J. Burschka, C. Y. Yi, F. Kessler, M. K. Nazeeruddin and M. Gratzel, "Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles" Energ. Environ. Sci., 2011, 4, 4921-4924.
[20] A. Reynal and E. Palomares, "Ruthenium Polypyridyl Sensitisers in Dye Solar Cells Based on Mesoporous TiO2" Eur. J. Inorg. Chem., 2011, 4509-4526.
[21] M. Gratzel, "Recent Advances in Sensitized Mesoscopic Solar Cells" Accounts. Chem. Res., 2009, 42, 1788-1798.
[22] A. Solbrand, H. Lindstrom, H. Rensmo, A. Hagfeldt, S. E. Lindquist and S. Sodergren, "Electron transport in the nanostructured TiO2-electrolyte system studied with time-resolved photocurrents" J. Phys. Chem. B, 1997, 101, 2514-2518.
[23] J. M. Gardner, J. M. Giaimuccio and G. J. Meyer, "Evidence for Iodine Atoms as Intermediates in the Dye Sensitized Formation of I-I Bonds" J. Am. Chem. Soc., 2008, 130, 17252-17253.
[24] A. Y. Anderson, P. R. F. Barnes, J. R. Durrant and B. C. O'Regan, "Simultaneous Transient Absorption and Transient Electrical Measurements on Operating Dye-Sensitized Solar Cells: Elucidating the Intermediates in Iodide Oxidation" J. Phys. Chem. C, 2010, 114, 1953-1958.
[25] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Graetzel, "Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes" J. Am. Chem. Soc., 1993, 115, 6382-6390.
[26] M. Gratzel, "Recent advances in sensitized mesoscopic solar cells" Acc. Chem. Res., 2009, 42, 1788-1798.
[27] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, "Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency" Science, 2011, 334, 629-634.
[28] A. Islam, H. Sugihara and H. Arakawa, "Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells" J. Photoch. Photobio. A, 2003, 158, 131-138.
[29] G. Oskam, B. V. Bergeron, G. J. Meyer and P. C. Searson, "Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells" J. Phys. Chem. B, 2001, 105, 6867-6873.
[30] T. Daeneke, A. J. Mozer, Y. Uemura, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach and L. Spiccia, "Dye Regeneration Kinetics in Dye-Sensitized Solar Cells" J. Am. Chem. Soc., 2012, 134, 16925-16928.
[31] W. H. Liu, I. C. Wu, C. H. Lai, C. H. Lai, P. T. Chou, Y. T. Li, C. L. Chen, Y. Y. Hsu and Y. Chi, "Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells" Chem. Commun., 2008, 5152-5154.
[32] K. Kakiage, Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unno and M. Hanaya, "An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell" Chem. Commun. (Camb), 2014, 50, 6379-6381.
[33] Z. Yao, M. Zhang, R. Li, L. Yang, Y. Qiao and P. Wang, "A Metal-Free N-Annulated Thienocyclopentaperylene Dye: Power Conversion Efficiency of 12 % for Dye-Sensitized Solar Cells" Angew. Chem. Int. Ed. Engl., 2015, 54, 5994-5998.
[34] Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li and P. Wang, "Donor/Acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells" J. Am. Chem. Soc., 2015, 137, 3799-3802.
[35] A. K. Burrell, D. L. Officer, P. G. Plieger and D. C. W. Reid, "Synthetic routes to multiporphyrin arrays" Chem. Rev., 2001, 101, 2751-2796.
[36] T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau and M. Gratzel, "Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins" Angew. Chem. Int. Edit., 2010, 49, 6646-6649.
[37] A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency" Science, 2011, 334, 629-634.
[38] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, "Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(Ii) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline TiO2 Electrodes" J. Am. Chem. Soc., 1993, 115, 6382-6390.
[39] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, "Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers" J. Am. Chem. Soc., 2005, 127, 16835-16847.
[40] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Gratzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte" Nat. Mater., 2003, 2, 402-407.
[41] P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin and M. Gratzel, "Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells" Adv. Mater., 2004, 16, 1806-1811.
[42] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Grätzel, "A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells" J. Am. Chem. Soc., 2004, 127, 808-809.
[43] C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen and K.-C. Ho, "A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells" Angew. Chem. Int. Ed., 2006, 45, 5822-5825.
[44] C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen and K. C. Ho, "A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells" Adv. Mater., 2007, 19, 3888-+.
[45] C. Y. Chen, N. Pootrakulchote, S. J. Wu, M. K. Wang, J. Y. Li, J. H. Tsai, C. G. Wu, S. M. Zakeeruddin and M. Gratzel, "New Ruthenium Sensitizer with Carbazole Antennas for Efficient and Stable Thin-Film Dye-Sensitized Solar Cells" J. Phys. Chem. C, 2009, 113, 20752-20757.
[46] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang, "High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states" ACS nano, 2010, 4, 6032-6038.
[47] Y. M. Cao, Y. Bai, Q. J. Yu, Y. M. Cheng, S. Liu, D. Shi, F. F. Gao and P. Wang, "Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine" J. Phys. Chem. C, 2009, 113, 6290-6297.
[48] Q. J. Yu, S. Liu, M. Zhang, N. Cai, Y. Wang and P. Wang, "An Extremely High Molar Extinction Coefficient Ruthenium Sensitizer in Dye-Sensitized Solar Cells: The Effects of pi-Conjugation Extension" J. Phys. Chem. C, 2009, 113, 14559-14566.
[49] D. Shi, N. Pootrakulchote, R. Z. Li, J. Guo, Y. Wang, S. M. Zakeeruddin, M. Gratzel and P. Wang, "New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes" J. Phys. Chem. C, 2008, 112, 17046-17050.
[50] F. F. Gao, Y. Wang, J. Zhang, D. Shi, M. K. Wang, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gratzel, "A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell" Chem. Commun., 2008, 2635-2637.
[51] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gra¨tzel, "Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells" J. Am. Chem. Soc., 2008, 130, 10720-10728.
[52] S. H. Wadman, J. M. Kroon, K. Bakker, M. Lutz, A. L. Spek, G. P. M. van Klink and G. van Koten, "Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells" Chem. Commun., 2007, 1907-1909.
[53] T. Bessho, E. Yoneda, J.-H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, "New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications" J. Am. Chem. Soc., 2009, 131, 5930-5934.
[54] K.-L. Wu, H.-C. Hsu, K. Chen, Y. Chi, M.-W. Chung, W.-H. Liu and P.-T. Chou, "Development of thiocyanate-free, charge-neutral Ru(ii) sensitizers for dye-sensitized solar cells" Chem. Commun., 2010, 46, 5124.
[55] K.-L. Wu, W.-P. Ku, J. N. Clifford, E. Palomares, S.-T. Ho, Y. Chi, S.-H. Liu, P.-T. Chou, M. K. Nazeeruddin and M. Grätzel, "Harnessing the open-circuit voltage via a new series of Ru(ii) sensitizers bearing (iso-)quinolinyl pyrazolate ancillaries" Energ. Environ. Sci., 2013, 6, 859-870.
[56] P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, "Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells" J. Am. Chem. Soc., 2001, 123, 1613-1624.
[57] K. S. Chen, W. H. Liu, Y. H. Wang, C. H. Lai, P. T. Chou, G. H. Lee, K. Chen, H. Y. Chen, Y. Chi and F. C. Tung, "New family of ruthenium-dye-sensitized nanocrystalline TiO2 solar cells with a high solar-energy-conversion efficiency" Adv. Funct. Mater, 2007, 17, 2964-2974.
[58] K. Chen, Y. H. Hong, Y. Chi, W. H. Liu, B. S. Chen and P. T. Chou, "Strategic design and synthesis of novel tridentate bipyridine pyrazolate coupled Ru(II) complexes to achieve superior solar conversion efficiency" J. Mater. Chem., 2009, 19, 5329-5335.
[59] B. S. Chen, K. Chen, Y. H. Hong, W. H. Liu, T. H. Li, C. H. Lai, P. T. Chou, Y. Chi and G. H. Lee, "Neutral, panchromatic Ru(II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance" Chem. Commun., 2009, 5844-5846.
[60] M. Ikeda, N. Koide, L. Han, A. Sasahara and H. Onishi, "Scanning tunneling microscopy study of black dye and deoxycholic acid adsorbed on a rutile TiO2(110)" Langmuir, 2008, 24, 8056-8060.
[61] C. C. Chou, F. C. Hu, H. H. Yeh, H. P. Wu, Y. Chi, J. N. Clifford, E. Palomares, S. H. Liu, P. T. Chou and G. H. Lee, "Highly efficient dye-sensitized solar cells based on panchromatic ruthenium sensitizers with quinolinylbipyridine anchors" Angew. Chem. Int. Ed. Engl., 2014, 53, 178-183.
[62] R. Argazzi, G. Larramona, C. Contado and C. A. Bignozzi, "Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4,4"-tricarboxy-2,2': 6',2"-terpyridine and cyanide ligands" J. Photoch. Photobio. A, 2004, 164, 15-21.
[63] T. Kinoshita, J. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo and H. Segawa, "Enhancement of Near-IR Photoelectric Conversion in Dye-Sensitized Solar Cells Using an Osmium Sensitizer with Strong Spin-Forbidden Transition" J. Phys. Chem. Lett., 2012, 3, 394-398.
[64] K.-L. Wu, S.-T. Ho, C.-C. Chou, Y.-C. Chang, H.-A. Pan, Y. Chi and P.-T. Chou, "Engineering of Osmium(II)-Based Light Absorbers for Dye-Sensitized Solar Cells" Angew. Chem. Int. Ed., 2012, 51, 5642-5646.
[65] T. Bessho, E. Yoneda, J. H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin and M. Gratzel, "New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications" J. Am. Chem. Soc., 2009, 131, 5930-5934.
[66] 楊雅雯, 「高吸收係數之釕金屬染料合成及其在染敏太陽能電池上的應用」, 國立清華大學 化學研究所, 碩士論文, 2013.
[67] W. D. Brown and A. H. Gouliaev, "Bromination of isoquinoline, quinoline, quinazoline and quinoxaline in strong acid" Synthesis-Stuttgart, 2002, 83-86.
[68] J. B. Hendrickson and C. Rodriguez, "An Efficient Synthesis of Substituted Isoquinolines" J. Org. Chem., 1982, 48, 3344-3346.
[69] B. Czako, La´szlo´Ku¨rti, A. Mammoto, D. E. Ingber and E. J. Corey, "Discovery of Potent and Practical Antiangiogenic Agents Inspired by Cortistatin A" J. Am. Chem. Soc., 2009, 131, 9014-9019.
[70] S. Nuckel and P. Burger, "Transition Metal Complexes with Sterically Demanding Ligands, 3.1 Synthetic Access to Square-Planar Terdentate Pyridine-Diimine Rhodium(I) and Iridium(I) Methyl Complexes: Successful Detour via Reactive Triflate and Methoxide Complexes" Organometallics, 2001, 20, 4345-4320.
[71] R. Jain, B. Vaitilingam, A. Nayyar and P. B. Palde, "Substituted 4-methylquinolines as a new class of anti-tuberculosis agents" Bioorg. Med. Chem. Lett., 2003, 13, 1051-1054.
[72] C. Giordano, F. Minisci, E. Vismara and S. Levi, "A General, Selective, and Convenient Procedure of Homolytic Formylation of Heteroaromatic Bases" J. Org. Chem., 1986, 51, 536-537.
[73] M. W. Chung, T. Y. Lin, C. C. Hsieh, K. C. Tang, H. Fu, P. T. Chou, S. H. Yang and Y. Chi, "Excited-State Intramolecular Proton Transfer (ESIPT) Fine Tuned by Quinoline-Pyrazole Isomerism: pi-Conjugation Effect on ESIPT" J. Phys. Chem. A, 2010, 114, 7886-7891.
[74] G. Boschloo, E. A. Gibson and A. Hagfeldt, "Photomodulated Voltammetry of Iodide/Triiodide Redox Electrolytes and Its Relevance to Dye-Sensitized Solar Cells" J. Phys. Chem. Lett., 2011, 2, 3016-3020.
[75] S. E. Koops, B. C. O'Regan, P. R. Barnes and J. R. Durrant, "Parameters influencing the efficiency of electron injection in dye-sensitized solar cells" J. Am. Chem. Soc., 2009, 131, 4808-4818.
[76] Q. Wang, S. It, M. Grätzel, F. Fabregat-Santiago, I. n. Mora-Sero´, J. Bisquert, T. Bessho and H. Imai, "Characteristics of High Efficiency Dye-Sensitized Solar Cells" J. Phys. Chem. B, 2006, 110, 25210-25221.
[77] M. Wang, P. Chen, R. Humphry-Baker, S. M. Zakeeruddin and M. Gratzel, "The Influence of Charge Transport and Recombination on the Performance of Dye-Sensitized Solar Cells" Chemphyschem, 2009, 10, 290-299.
[78] H. X. Wang and L. M. Peter, "Influence of Electrolyte Cations on Electron Transport and Electron Transfer in Dye-Sensitized Solar Cells" J. Phys. Chem. C, 2012, 116, 10468-10475.
[79] F. Fontana, F. Minisci, M. C. N. Barbosa and E. Vismara, "Homolytic Acylation of Protonated Pyridines and Pyrazines with a-Keto Acids: The Problem of Monoacylation" J. Org. Chem., 1991, 56, 2866-2869.
[80] H. T. Nguyen, H. M. Ta and T. Lund, "Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine" Sol. Energ. Mat. Sol. C., 2007, 91, 1934-1942.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *