|
[1] S.-W. Wang, C.-C. Chou, F.-C. Hu, K.-L. Wu, Y. Chi, J. N. Clifford, E. Palomares, S.-H. Liu, P.-T. Chou, T.-C. Wei and T.-Y. Hsiao, "Panchromatic Ru(II) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells" J. Mater. Chem. A, 2014, 2, 17618-17627. [2] C. C. Chou, K. L. Wu, Y. Chi, W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin and P. T. Chou, "Ruthenium(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells" Angew. Chem. Int. Edit., 2011, 50, 2054-2058. [3] D. M. Chapin, C. S. Fuller and G. L. Pearson, "A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power" J. Appl. Phys., 1954, 25, 676-677. [4] B. Oregan and M. Gratzel, "A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films" Nature, 1991, 353, 737-740. [5] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho and M. Gratzel, "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers" J. Am. Chem. Soc., 2005, 127, 16835-16847. [6] N. G. Park, J. van de Lagemaat and A. J. Frank, "Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells" J. Phys. Chem. B, 2000, 104, 8989-8994. [7] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%" Thin Solid Films, 2008, 516, 4613-4619. [8] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, "Dye-Sensitized Solar Cells" Chem. Rev., 2010, 110, 6595-6663. [9] G. Boschloo, S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun and A. Hagfeldt, "Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells" J. Am. Chem. Soc., 2010, 132, 16714-16724. [10] Y. M. Cao, J. Zhang, Y. Bai, R. Z. Li, S. M. Zakeeruddin, M. Gratzel and P. Wang, "Dye-sensitized solar cells with solvent-free ionic liquid electrolytes" J. Phys. Chem. C, 2008, 112, 13775-13781. [11] Y. Bai, Y. M. Cao, J. Zhang, M. Wang, R. Z. Li, P. Wang, S. M. Zakeeruddin and M. Gratzel, "High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts" Nat. Mater., 2008, 7, 626-630. [12] N. Kopidakis, N. R. Neale and A. J. Frank, "Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: Evidence for surface passivation" J. Phys. Chem. B, 2006, 110, 12485-12489. [13] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): The case of solar cells using the I-/I3- redox couple" J. Phys. Chem. B, 2005, 109, 3480-3487. [14] N. Papageorgiou, W. F. Maier and M. Gratzel, "An iodine/triiodide reduction electrocatalyst for aqueous and organic media" J. Electrochem. Soc., 1997, 144, 876-884. [15] T. C. Wei, C. C. Wan and Y. Y. Wang, "Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells" Appl. Phys. Lett., 2006, 88, 103122. [16] J.-L. Lan, C.-C. Wan, T.-C. Wei, W.-C. Hsu, C. Peng, Y.-H. Chang and C.-M. Chen, "Improvement of Photovoltaic Performance of Dye-Sensitized Solar Cell by Post Heat Treatment of Polymer-Capped Nano-Platinum Counterelectrode" Int. J. Electrochem. Sci, 2011, 6, 1230-1236. [17] T.-C. Wei, C.-C. Wan, Y.-Y. Wang, C.-m. Chen and H.-s. Shiu, "Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum Nanoclusters on Indium-Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells" J. Phys. Chem. C, 2007, 111, 4847-4853. [18] E. Ramasamy, W. J. Lee, D. Y. Lee and J. S. Song, "Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I-3(-)) reduction in dye-sensitized solar cells" Electrochem. Commun., 2008, 10, 1087-1089. [19] H. N. Tsao, J. Burschka, C. Y. Yi, F. Kessler, M. K. Nazeeruddin and M. Gratzel, "Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles" Energ. Environ. Sci., 2011, 4, 4921-4924. [20] A. Reynal and E. Palomares, "Ruthenium Polypyridyl Sensitisers in Dye Solar Cells Based on Mesoporous TiO2" Eur. J. Inorg. Chem., 2011, 4509-4526. [21] M. Gratzel, "Recent Advances in Sensitized Mesoscopic Solar Cells" Accounts. Chem. Res., 2009, 42, 1788-1798. [22] A. Solbrand, H. Lindstrom, H. Rensmo, A. Hagfeldt, S. E. Lindquist and S. Sodergren, "Electron transport in the nanostructured TiO2-electrolyte system studied with time-resolved photocurrents" J. Phys. Chem. B, 1997, 101, 2514-2518. [23] J. M. Gardner, J. M. Giaimuccio and G. J. Meyer, "Evidence for Iodine Atoms as Intermediates in the Dye Sensitized Formation of I-I Bonds" J. Am. Chem. Soc., 2008, 130, 17252-17253. [24] A. Y. Anderson, P. R. F. Barnes, J. R. Durrant and B. C. O'Regan, "Simultaneous Transient Absorption and Transient Electrical Measurements on Operating Dye-Sensitized Solar Cells: Elucidating the Intermediates in Iodide Oxidation" J. Phys. Chem. C, 2010, 114, 1953-1958. [25] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Graetzel, "Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes" J. Am. Chem. Soc., 1993, 115, 6382-6390. [26] M. Gratzel, "Recent advances in sensitized mesoscopic solar cells" Acc. Chem. Res., 2009, 42, 1788-1798. [27] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, "Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency" Science, 2011, 334, 629-634. [28] A. Islam, H. Sugihara and H. Arakawa, "Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells" J. Photoch. Photobio. A, 2003, 158, 131-138. [29] G. Oskam, B. V. Bergeron, G. J. Meyer and P. C. Searson, "Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells" J. Phys. Chem. B, 2001, 105, 6867-6873. [30] T. Daeneke, A. J. Mozer, Y. Uemura, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach and L. Spiccia, "Dye Regeneration Kinetics in Dye-Sensitized Solar Cells" J. Am. Chem. Soc., 2012, 134, 16925-16928. [31] W. H. Liu, I. C. Wu, C. H. Lai, C. H. Lai, P. T. Chou, Y. T. Li, C. L. Chen, Y. Y. Hsu and Y. Chi, "Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells" Chem. Commun., 2008, 5152-5154. [32] K. Kakiage, Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unno and M. Hanaya, "An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell" Chem. Commun. (Camb), 2014, 50, 6379-6381. [33] Z. Yao, M. Zhang, R. Li, L. Yang, Y. Qiao and P. Wang, "A Metal-Free N-Annulated Thienocyclopentaperylene Dye: Power Conversion Efficiency of 12 % for Dye-Sensitized Solar Cells" Angew. Chem. Int. Ed. Engl., 2015, 54, 5994-5998. [34] Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li and P. Wang, "Donor/Acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells" J. Am. Chem. Soc., 2015, 137, 3799-3802. [35] A. K. Burrell, D. L. Officer, P. G. Plieger and D. C. W. Reid, "Synthetic routes to multiporphyrin arrays" Chem. Rev., 2001, 101, 2751-2796. [36] T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau and M. Gratzel, "Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins" Angew. Chem. Int. Edit., 2010, 49, 6646-6649. [37] A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency" Science, 2011, 334, 629-634. [38] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, "Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(Ii) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline TiO2 Electrodes" J. Am. Chem. Soc., 1993, 115, 6382-6390. [39] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, "Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers" J. Am. Chem. Soc., 2005, 127, 16835-16847. [40] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Gratzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte" Nat. Mater., 2003, 2, 402-407. [41] P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin and M. Gratzel, "Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells" Adv. Mater., 2004, 16, 1806-1811. [42] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Grätzel, "A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells" J. Am. Chem. Soc., 2004, 127, 808-809. [43] C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen and K.-C. Ho, "A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells" Angew. Chem. Int. Ed., 2006, 45, 5822-5825. [44] C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen and K. C. Ho, "A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells" Adv. Mater., 2007, 19, 3888-+. [45] C. Y. Chen, N. Pootrakulchote, S. J. Wu, M. K. Wang, J. Y. Li, J. H. Tsai, C. G. Wu, S. M. Zakeeruddin and M. Gratzel, "New Ruthenium Sensitizer with Carbazole Antennas for Efficient and Stable Thin-Film Dye-Sensitized Solar Cells" J. Phys. Chem. C, 2009, 113, 20752-20757. [46] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang, "High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states" ACS nano, 2010, 4, 6032-6038. [47] Y. M. Cao, Y. Bai, Q. J. Yu, Y. M. Cheng, S. Liu, D. Shi, F. F. Gao and P. Wang, "Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine" J. Phys. Chem. C, 2009, 113, 6290-6297. [48] Q. J. Yu, S. Liu, M. Zhang, N. Cai, Y. Wang and P. Wang, "An Extremely High Molar Extinction Coefficient Ruthenium Sensitizer in Dye-Sensitized Solar Cells: The Effects of pi-Conjugation Extension" J. Phys. Chem. C, 2009, 113, 14559-14566. [49] D. Shi, N. Pootrakulchote, R. Z. Li, J. Guo, Y. Wang, S. M. Zakeeruddin, M. Gratzel and P. Wang, "New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes" J. Phys. Chem. C, 2008, 112, 17046-17050. [50] F. F. Gao, Y. Wang, J. Zhang, D. Shi, M. K. Wang, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gratzel, "A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell" Chem. Commun., 2008, 2635-2637. [51] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gra¨tzel, "Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells" J. Am. Chem. Soc., 2008, 130, 10720-10728. [52] S. H. Wadman, J. M. Kroon, K. Bakker, M. Lutz, A. L. Spek, G. P. M. van Klink and G. van Koten, "Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells" Chem. Commun., 2007, 1907-1909. [53] T. Bessho, E. Yoneda, J.-H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, "New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications" J. Am. Chem. Soc., 2009, 131, 5930-5934. [54] K.-L. Wu, H.-C. Hsu, K. Chen, Y. Chi, M.-W. Chung, W.-H. Liu and P.-T. Chou, "Development of thiocyanate-free, charge-neutral Ru(ii) sensitizers for dye-sensitized solar cells" Chem. Commun., 2010, 46, 5124. [55] K.-L. Wu, W.-P. Ku, J. N. Clifford, E. Palomares, S.-T. Ho, Y. Chi, S.-H. Liu, P.-T. Chou, M. K. Nazeeruddin and M. Grätzel, "Harnessing the open-circuit voltage via a new series of Ru(ii) sensitizers bearing (iso-)quinolinyl pyrazolate ancillaries" Energ. Environ. Sci., 2013, 6, 859-870. [56] P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, "Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells" J. Am. Chem. Soc., 2001, 123, 1613-1624. [57] K. S. Chen, W. H. Liu, Y. H. Wang, C. H. Lai, P. T. Chou, G. H. Lee, K. Chen, H. Y. Chen, Y. Chi and F. C. Tung, "New family of ruthenium-dye-sensitized nanocrystalline TiO2 solar cells with a high solar-energy-conversion efficiency" Adv. Funct. Mater, 2007, 17, 2964-2974. [58] K. Chen, Y. H. Hong, Y. Chi, W. H. Liu, B. S. Chen and P. T. Chou, "Strategic design and synthesis of novel tridentate bipyridine pyrazolate coupled Ru(II) complexes to achieve superior solar conversion efficiency" J. Mater. Chem., 2009, 19, 5329-5335. [59] B. S. Chen, K. Chen, Y. H. Hong, W. H. Liu, T. H. Li, C. H. Lai, P. T. Chou, Y. Chi and G. H. Lee, "Neutral, panchromatic Ru(II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance" Chem. Commun., 2009, 5844-5846. [60] M. Ikeda, N. Koide, L. Han, A. Sasahara and H. Onishi, "Scanning tunneling microscopy study of black dye and deoxycholic acid adsorbed on a rutile TiO2(110)" Langmuir, 2008, 24, 8056-8060. [61] C. C. Chou, F. C. Hu, H. H. Yeh, H. P. Wu, Y. Chi, J. N. Clifford, E. Palomares, S. H. Liu, P. T. Chou and G. H. Lee, "Highly efficient dye-sensitized solar cells based on panchromatic ruthenium sensitizers with quinolinylbipyridine anchors" Angew. Chem. Int. Ed. Engl., 2014, 53, 178-183. [62] R. Argazzi, G. Larramona, C. Contado and C. A. Bignozzi, "Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4,4"-tricarboxy-2,2': 6',2"-terpyridine and cyanide ligands" J. Photoch. Photobio. A, 2004, 164, 15-21. [63] T. Kinoshita, J. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo and H. Segawa, "Enhancement of Near-IR Photoelectric Conversion in Dye-Sensitized Solar Cells Using an Osmium Sensitizer with Strong Spin-Forbidden Transition" J. Phys. Chem. Lett., 2012, 3, 394-398. [64] K.-L. Wu, S.-T. Ho, C.-C. Chou, Y.-C. Chang, H.-A. Pan, Y. Chi and P.-T. Chou, "Engineering of Osmium(II)-Based Light Absorbers for Dye-Sensitized Solar Cells" Angew. Chem. Int. Ed., 2012, 51, 5642-5646. [65] T. Bessho, E. Yoneda, J. H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin and M. Gratzel, "New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications" J. Am. Chem. Soc., 2009, 131, 5930-5934. [66] 楊雅雯, 「高吸收係數之釕金屬染料合成及其在染敏太陽能電池上的應用」, 國立清華大學 化學研究所, 碩士論文, 2013. [67] W. D. Brown and A. H. Gouliaev, "Bromination of isoquinoline, quinoline, quinazoline and quinoxaline in strong acid" Synthesis-Stuttgart, 2002, 83-86. [68] J. B. Hendrickson and C. Rodriguez, "An Efficient Synthesis of Substituted Isoquinolines" J. Org. Chem., 1982, 48, 3344-3346. [69] B. Czako, La´szlo´Ku¨rti, A. Mammoto, D. E. Ingber and E. J. Corey, "Discovery of Potent and Practical Antiangiogenic Agents Inspired by Cortistatin A" J. Am. Chem. Soc., 2009, 131, 9014-9019. [70] S. Nuckel and P. Burger, "Transition Metal Complexes with Sterically Demanding Ligands, 3.1 Synthetic Access to Square-Planar Terdentate Pyridine-Diimine Rhodium(I) and Iridium(I) Methyl Complexes: Successful Detour via Reactive Triflate and Methoxide Complexes" Organometallics, 2001, 20, 4345-4320. [71] R. Jain, B. Vaitilingam, A. Nayyar and P. B. Palde, "Substituted 4-methylquinolines as a new class of anti-tuberculosis agents" Bioorg. Med. Chem. Lett., 2003, 13, 1051-1054. [72] C. Giordano, F. Minisci, E. Vismara and S. Levi, "A General, Selective, and Convenient Procedure of Homolytic Formylation of Heteroaromatic Bases" J. Org. Chem., 1986, 51, 536-537. [73] M. W. Chung, T. Y. Lin, C. C. Hsieh, K. C. Tang, H. Fu, P. T. Chou, S. H. Yang and Y. Chi, "Excited-State Intramolecular Proton Transfer (ESIPT) Fine Tuned by Quinoline-Pyrazole Isomerism: pi-Conjugation Effect on ESIPT" J. Phys. Chem. A, 2010, 114, 7886-7891. [74] G. Boschloo, E. A. Gibson and A. Hagfeldt, "Photomodulated Voltammetry of Iodide/Triiodide Redox Electrolytes and Its Relevance to Dye-Sensitized Solar Cells" J. Phys. Chem. Lett., 2011, 2, 3016-3020. [75] S. E. Koops, B. C. O'Regan, P. R. Barnes and J. R. Durrant, "Parameters influencing the efficiency of electron injection in dye-sensitized solar cells" J. Am. Chem. Soc., 2009, 131, 4808-4818. [76] Q. Wang, S. It, M. Grätzel, F. Fabregat-Santiago, I. n. Mora-Sero´, J. Bisquert, T. Bessho and H. Imai, "Characteristics of High Efficiency Dye-Sensitized Solar Cells" J. Phys. Chem. B, 2006, 110, 25210-25221. [77] M. Wang, P. Chen, R. Humphry-Baker, S. M. Zakeeruddin and M. Gratzel, "The Influence of Charge Transport and Recombination on the Performance of Dye-Sensitized Solar Cells" Chemphyschem, 2009, 10, 290-299. [78] H. X. Wang and L. M. Peter, "Influence of Electrolyte Cations on Electron Transport and Electron Transfer in Dye-Sensitized Solar Cells" J. Phys. Chem. C, 2012, 116, 10468-10475. [79] F. Fontana, F. Minisci, M. C. N. Barbosa and E. Vismara, "Homolytic Acylation of Protonated Pyridines and Pyrazines with a-Keto Acids: The Problem of Monoacylation" J. Org. Chem., 1991, 56, 2866-2869. [80] H. T. Nguyen, H. M. Ta and T. Lund, "Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine" Sol. Energ. Mat. Sol. C., 2007, 91, 1934-1942.
|